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a b s t r a c t

Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat con-
duction that allow for the presence of time lags in the heat flux and the temperature gra-
dient. These lags may need to be considered when modeling microscale heat transfer, and
thus DPL models have found application in the last years in a wide range of theoretical
and technical heat transfer problems. Consequently, analytical solutions and methods for
computing numerical approximations have been proposed for particular DPL models in
different settings.

In this work, a compact difference scheme for second order DPL models is developed,
providing higher order precision than a previously proposedmethod. The scheme is shown
to be unconditionally stable and convergent, and its accuracy is illustrated with numerical
examples.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Technical advances in nanomaterials and in the applications of ultrafast lasers have lead in last two decades to an in-
creasing interest in non-Fourier models of heat conduction [1–5]. Thesemodels try to account for phenomena, such as finite
speeds of propagation andwave behaviors, that appearwhen studying heat transfer at themicroscale level, i.e., in very short
time intervals or at very small space dimensions [6,7].

The basis for the dual-phase-lagging (DPL) family ofmodels is the introduction of two time lags into the Fourier law [7–9],

q(r, t + τq) = −k∇T (r, t + τT ), (1)

where τq and τT are, respectively, the phase lags in the heat flux vector, q, and the temperature gradient, ∇T , t and r are the
time and spatial coordinates, and k is the conductivity.

When both lags are zero, so that the classical Fourier law is recovered, the combination of (1) with the conservation of
energy principle leads to the diffusion or classical heat conduction equation. Otherwise, a partial differential equation with
delay is obtained [10,11].

Most commonly, though, first or higher order approximations in the time lags in (1) are used [8,12,13]. In this work, the
heat equation resulting from first order approximations,
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usually referred to as the DPL model [8], will be denoted DPL(1, 1), and the equations derived from second order approxi-
mation in τq and up to second order approximation in τT will be denoted DPL(2, 1),
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and DPL(2, 2),
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The construction of numerical solutions for DPL(1, 1) model and variations in different settings has been addressed in
previous works (e.g., [14–19]). For DPL(2, 2) models, a Crank–Nicholson type difference scheme was presented in [20]. The
objective of this work is to develop a higher order, compact difference scheme for the same problem considered in [20], in
a similar way as was done in [17] for DPL(1, 1) models but employing a more direct approach to construct the scheme and
prove its stability and convergence.

As in [20], a general equation for heat conduction in one dimension will be considered,
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which includes DPL(2, 2), as given by (4), by taking
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and reduces to DPL(2, 1)when E = 0. The problem is stated for a finite domain x ∈ [0, l], with Dirichlet boundary conditions,

T (0, t) = T (l, t) = 0, t ≥ 0, (7)

and initial conditions

T (x, 0) = φ(x),
∂
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∂2

∂t2
T (x, 0) = ψ(x), x ∈ [0, l] . (8)

The rest of the paper is organized as follows. In the next section, the new compact difference scheme for DPL(2, 2) model
is constructed. In Section 3, after expressing the method as a two-level scheme, the unconditional stability of the method
is proved. Next, in Section 4, assuming sufficient regularity of the solution, the consistency of the method is shown, and
bounds on the truncation errors are obtained. In the last section, numerical examples are presented, illustrating the higher
accuracy of the new method in comparison with the scheme previously proposed in [20].

2. Construction of the compact finite difference scheme

First, two new variables, v(x, t) and u(x, t), are introduced in order to express (5) as a first order system in t ,

v (x, t) = BT (x, t)+ C
∂

∂t
T (x, t) , (9)

and
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Thus, using (9) and (10), it can be shown that Eq. (5) can be written as
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where

a = (C2
+ EB2

− BDC − ACE)/C2, b = (DC − BE)/C2, c = E/C . (12)

Consequently, writing (9) and (10) in the form
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