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a b s t r a c t

Staggered finite difference methods for a one-dimensional Biot’s problem are considered.
The permeability tensor of the porous medium is assumed to depend on the strain, thus
yielding a non-linear model. Some strong two-side estimates for displacements and for
pressure are provided and convergence results in the discrete L2-norm are proved. Nu-
merical examples are given to illustrate the good performance of the proposed numerical
approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Biot’s model addresses the time-dependent coupling between the deformation of a porous matrix and the fluid flow
inside. The porous matrix is supposed to be saturated by the fluid phase and the flow is governed by Darcy’s law. The state
of the continuousmedium is characterized by the knowledge of the displacements and the fluid pressure at each point of the
domain. The one-dimensional theory of isothermal consolidation was first formulated by Terzaghi [1] which was extended
to a general 3D consolidation theory by Biot [2,3]. Existence and uniqueness of the solution of the problem are analyzed by
Showalter in [4] and by Ženišek in [5]. Nowadays, Biot’s models are frequently used in a great variety of disciplines as in
geomechanics, petrol engineering, hydrogeology, biomechanics and food processing.

Analytical solution of Biot’smodel is available only in very special cases, and therefore, numericalmethods are commonly
used for solving this problem. In general, the solution of complex poromechanics problems is usually approximated by finite
elements, see for instance themonographby Lewis and Schrefler [6]. Problemswhere the solution is smooth are satisfactorily
solved by standard finite element discretizations. Nevertheless, when strong pressure gradients appear, solutions generated
by finite element methods exhibit non-physical oscillations. These oscillations can be minimized if stable finite element
methods are used. As for Stokes problems, approximation spaces for the vector and the scalar fields satisfying the LBB
stability condition [7] can be used. This approach has been analyzed, for example in [8], for the classical quasi-static Biot’s
model. Nevertheless, thesemethods still present small oscillations in the pressure approximationwhen very sharp boundary
layers occur.

Naturally, as for finite elements, standard finite-difference schemes may suffer the same unstable behavior in the pres-
sure approximation. In [9], a reason for this non-monotone behavior for one-dimensional consolidation problems has been
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identified, and to avoid this effect, the use of staggered grid discretizations was suggested, theoretically analyzed and tested
in two-dimensions [10]. Notice that the use of staggered grids is the way to incorporate a discrete infsup condition in
the finite-difference framework, see for example [11]. An extension of this method to the case of discontinuous coeffi-
cients through harmonic averaging has been presented in [12]. For other Biot’s models, such as the secondary consolidation
model [13], the double porosity model [14] and the fully dynamic problem [15], staggered grids have also been success-
fully applied. In this work, we also apply this technique to non-linear poroelasticity problems in order to avoid the pressure
oscillations.

Most of the works in this area treat the linear case. However, the hydraulic permeability of hydrogels and other hydrated
soft tissues (e.g., cartilage and intervertebral disc) is deformation dependent [16]. Also, in simulations of hydraulic fracturing
of rocks, it is often considered a dependence of the permeability tensor on the stress in exponential form [17]. All these
models give rise to non-linear problems. Barucq et al. proved in [18] the existence and uniqueness of the solution of a non-
linear fully dynamic poroelastic model, where the nonlinearity appeared in the first equation. Tavakoli and Ferronato [19]
used Galerkin’s method to prove the existence and uniqueness of solution of the variational problem associated to a non-
linear Biot’s model where the permeability of the material depended on the strain. The aim of this research is to provide
results of stability and convergence of a finite difference scheme on staggered grids for this non-linear Biot’s model.

For solving numerically non-linear Biot’s models, it is important to develop monotone schemes. Notice that monotone
schemes (schemes that satisfy the discrete maximum principle) have remarkable properties providing physically correct
solutions, see [20–22]. The study of these schemeswill be carried out on a class of one-dimensional problems uncoupled due
to the considered boundary conditions. This fact lets us simplify the problem to the case of non-linear parabolic equations
with boundary conditions of the second type. For linear parabolic problems, an approach for the construction of second-order
monotone finite difference schemes with boundary conditions of the second and third kind without using the differential
equation on the boundary of the domain was suggested in [23]. The main idea was based on the extension of the solution
of the problem in some small neighborhood of the domain and the use of half-integer grid points. Later, such approach was
applied to develop monotone finite difference schemes for non-linear parabolic equations with boundary conditions of the
first and third types [24]. In this work, this approach will be extended to the non-linear parabolic problem in the case of
boundary conditions of the second type, and as a consequence to the one-dimensional non-linear Biot’s model.

The rest of themanuscript is organized as follows. In Section 2,we propose the discretization by finite-difference schemes
of non-linear parabolic equations with boundary conditions of the second type. Two-side estimates of the numerical solu-
tion and convergence results in the discrete L2-norm are provided in Section 3 and Section 4 respectively. These results will
be used to prove the corresponding estimates of the pressure and of the displacements as well as convergence results for
the non-linear Biot’s model. Numerical results are presented in Section 6, and some conclusions are drawn at the end in
Section 7.

2. Difference schemes for non-linear parabolic problems with mixed boundary conditions

We consider a finite difference scheme for the solution of the non-linear parabolic differential equation
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with initial and boundary conditions given by

u(x, 0) = u0(x), x ∈ Ω̄,

u(0, t) = µ1(t), k(u)
∂u
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(l, t) = 0, t ∈ (0, T ].

(2)

We assume that the functions k(u) and f (x, t) are sufficiently smooth in such a way that the solution u(x, t) ∈ C4,2(QT ),
with QT = [0, l] × [0, T ]. Moreover, we suppose that there exist values k1 and k2 such that

0 < k1 ≤ k(u) ≤ k2, ∀u ∈ [m1,m2],

wherem1 and m2 are two constants such that
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Let N and N0 be positive integers and let h = 2l/(2N + 1) and τ = T/N0 be the space and time discretization parameters,
respectively. Then, we introduce the uniform grids

ω̄h = {xi = ih, i = 0, . . . ,N + 1} , (3)
ω̄t = {tn = nτ , n = 0, . . . ,N0, τN0 = T } . (4)
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