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a b s t r a c t

For the large-scale nonlinearmatrix equationswith low rank structure, thewell-developed
doubling algorithm in low rank form (DA-LR) is known as an efficient method to compute
the stabilizing solution. By further analyzing the global efficiency index constructed in this
paper, we propose a tripling algorithm in low rank form (TA-LR) from two points of view,
the cyclic reduction and the symplectic structure preservation. The new presented algo-
rithm shares the same pre-processing complexity with that of DA-LR, but can attain the
prescribed normalized residual level within less iterations by only consuming some negli-
gible iteration time as an offset. Under the solvability condition, the proposed algorithm is
demonstrated to inherit a cubic convergence and is capable of delivering errors from the
current iteration to the next with the same order. Numerical experiments including some
from nano research show that the TA-LR is highly efficient to compute the stabilizing so-
lution of large-scale nonlinear matrix equations with low rank structure.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear matrix equation (NME)

X + BX−1A = Q (1.1)

and its dual form

Y + AY−1B = Q (1.2)

with A, B, Q , X and Y ∈ Cn×n arise from many real-life applications such as in surface acoustic simulations [1–3], quadratic
eigenvalue problems in fast train [4–6] or computation of Green’s function in nano research [7–9]. The coefficientmatrices in
NME (1.1), obtained by discretizing theHamiltonian system from concrete problems, are usually providedwith the structure
of sparsity and low rank. Here in this paper we always suppose that the matrix Q is Hermitian and nonsingular with O(n)
complexity for solving the linear system Qx = a with x, a ∈ Cn and, matrices A and B respectively own ranks ra, rb ≪ n
such that they admit some low rank decompositions. It is widely approved that one favorite doubling algorithm, also called
the SDA-2, works very well for solving the NME (1.1). It is also argued by Chu et al. [10] that the doubling algorithm of
type 1 (SDA-1), when solving another class of discrete-time algebraic Riccati equations (DAREs) [11,12], is better than a
third-order structure-preserving tripling iterative strategy (STA-1) in defiance of the special low rank structure. Conceivably,
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similar conclusions may be drawn for SDA-2 when solving NME (1.1). Here in this paper we are going to give a theoretical
interpretation for this by using the efficiency index (EI). Particularly, we are more interested in the global efficiency of the
whole algorithm for large-scale NMEs with low rank structure, which may bring to light the motivation for developing
tripling algorithm in low rank form (TA-LR).

A reasonable index, introduced by Traub [13], to evaluate the efficiency of the iterative method for solving the scalar
equation f (x) = 0 is

EI = p1/q,

where p is the order of the method and q represents the number of pieces of information for one iteration. For example, the
classic Newton’smethod according to the EI above, has the efficiency

√
2 = 1.4142 since it converges quadratically with the

requirement of two pieces of information (one function evaluation and one derivative evaluation [13,14]). Unfortunately,
such an index seems too rough to be applied to iterative methods for solving matrix equations with dimension n ≥ 1. Here
we turn to Guo’s efficiency index [15], measured by flops counts, to re-interpret the efficiency of the doubling algorithm.

It is well-known that SDA-2 has a second order convergence in the non-critical case and the computational complexity
is about 40

3 n3 for one iteration [16,9]. So one has EIsda = 1.4142 by regarding 20
3 n3 flops as one piece of information. For

the structure-preserving tripling algorithm of type 2 (STA-2, see next section), additional 52
3 n3 flops are to be seen required

for establishing the third order convergence, which means EIsta = 3
20
3 n3/( 403 n3+ 52

3 n3)
= 1.2697. Therefore, one may argue

similarly to [10] that the SDA-2 is still better than STA-2 for solving NME (1.1) in generic cases.
However for large-scale NMEs with ra, rb ≪ n, the calculation of the above EI at each iteration seems not so important

since that the entire computations of SDA-2 in low rank form are mainly dominated by the O(n) pre-processing proce-
dure [17]. So it is more reasonable to consider the EI of the whole algorithm rather than that of each iteration. To be specif-
ical, suppose that ld and lt iterations are required respectively for the doubling algorithm and the tripling algorithm before
the termination and ra = rb := r . The global efficiency index (GEI) for SDA-2 and STA-2 could be defined as

GEIsda = 2
c

ld ·cd ·r3 and GEIsta = 3
c

lt ·ct ·r3 , (1.3)

respectively, where c is some proper positive constant, cd and ct stand for the complexity constants in the doubling algo-
rithm and the tripling algorithm respectively. Although complexity analysis in Section 5 indicates that ct is greater than cd
in (1.3), it is still possible that the GEIsta might be sufficiently approximative to the GEIsda provided that lt is less than dt
to some degree. Such a hedging trade-off will be validated practically and explained detailedly by some numerical experi-
ments in the last section. On the other but more vital hand, the whole iteration complexities of two algorithms are usually
far less than the dimension n for large-scale NMEs with low rank structure. Then their discrepancy on iteration time could
be largely compressed so as to be ignorable. These facts directly contribute our original motivation to reconsider the tripling
algorithm in low rank form (TA-LR). In fact, onewill see in numerical experiments that for large-scale problems, the TA-LR is
capable of attaining the prescribed residual level within less iterations (compared with the doubling algorithm in low rank
form (DA-LR)), only sacrificing some negligible iteration time as an offset.

Throughout this paper, we always assume that the following solvability condition in [18,8] holds true. So that both the
DA-LR and the TA-LR can obtain the stabilizing solution. Note that NME (1.1) is also closely related with the quadratic
polynomial matrix equation BZ2

− QZ + A = 0 with Z = X−1A and its solvability conditions can be found in [19–24].

Theorem 1.1. Let A = C + iD, B = C∗
+ iD∗ be n × n complex matrices with C = (A + B∗)/2, D = (A − B∗)/(2i) and the

superscript ‘‘∗’’ representing the conjugate transpose. Let Q = Re(Q ) + iIm(Q ). If the matrix ψ(z) = zD∗
+ Im(Q ) + z−1D

is positive definite for each z on the unit circle in the complex plane. Then the NME (1.1) (DNME (1.2)) has a stabilizing solution
Xs = Re(Xs)+ i Im(Xs) (Xs = Re(Xs)+ i Im(Xs)) with the spectral radius of X−1

s A (X−1
s B) less than one.

The rest of the paper is organized as follows. Section 2 develops the tripling algorithm for NME (1.1) from viewpoints
of the cyclic reduction and the structure preservation. A detailed convergence analysis is established in Section 3 and the
corresponding low rank algorithm TA-LR is constructed in Section 4, respectively. Section 5 is devoted to the complexity and
errors analysis. Numerical experiments are reported in the last section to show the efficiency of the TA-LR for computing
the stabilizing solution of large-scale NMEs.

Notation. Symbols N+, Rn×n and Cn×n in this paper stand for sets of positive integers, n×n real matrices and n×n complex
matrices, respectively. T represents the unit circle in the complex plane. In (or simply I if its dimension is clear from the
context) is the n × n identity matrix. For a matrix A ∈ Cn×n, σ(A) and ρ(A) denote respectively the spectrum and spectral
radius of A, and Re(A) and Im(A) stand respectively for the real part and the image part of A. For Hermitian matrices A and
B ∈ Cn×n, we say A > B (A ≥ B) if A − B is a positive definitive (positive semi-definite) matrix.

2. Tripling algorithm

In order to describe the tripling algorithm explicitly and conveniently, this section is divided into two parts to depict the
construction procedure from two points of view: (a) the cyclic reduction; (b) the symplectic structure preservation.
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