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a b s t r a c t

Recently, new algorithms for accurate matrix multiplication have been developed by the
authors. A characteristic of the algorithms is a high dependency on level-3 BLAS routines,
which are highly optimized for several architectures. An error-free splitting for floating-
point matrices is a key technique in the algorithms. In this paper, an improvement of the
error-free splitting is focused on. It is shown by numerical examples that the accuracy of
computed results of matrix products can be improved by the modified error-free splitting,
compared to that by the previous algorithms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with accurate matrix multiplication. Floating-point arithmetic as defined by IEEE 754 [1,2] is
performed very fast on recent architectures. On the other hand, since the significand of the floating-point numbers is finite,
floating-point arithmetic may cause rounding errors on each arithmetic operation. If rounding errors accumulate, then
inaccurate results may be obtained. To overcome this problem on matrix multiplication, there are several possibilities:

• multiple precision libraries [3–6]
• mixed precision libraries [7,8]
• accurate dot product or summation algorithms [9–13].1

Recently, we have developed accurate algorithms for floating-pointmatrixmultiplication [14,15]. Our algorithms involve
several floating-point matrix products which can be computed by functions supported in BLAS (Basic Linear Algebra
Subprograms). If so-called optimized BLAS is used, for example, OpenBLAS [16] based on GotoBLAS2 [17], Intel Math Kernel
Library and so forth, then the algorithms can receive the benefit of performance from the BLAS since the performance
of functions for matrix multiplication in such BLAS is nearly peak. Since the level 3 fraction [18], the amount of matrix
multiplication in a given algorithm, is very high, our algorithms produce accurate results very fast.
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1 Since a dot product can be transformed into an unevaluated sum of floating-point numbers by so-called error-free transformation, accurate summation

algorithms can be applied into the dot product. See [9].
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A key technique of the algorithms is an error-free splitting for floating-point matrices which transforms a floating-point
matrix into an unevaluated sum of several floating-point matrices. We focus on the case where given two floating-point
matrices are divided into unevaluated sums of two floating-point matrices, respectively. Let F be the set of floating-point
numbers as defined by the IEEE 754 standard [1,2]. For A ∈ Fm×n and B ∈ Fn×p, we split A and B such that A = A(1)

+A(2), B =

B(1)
+ B(2), where |a(1)

ij | ≥ |a(2)
ij | and |b(1)

ij | ≥ |b(2)
ij | except a(1)

ij = 0 and b(1)
ij = 0. Moreover, even if we evaluate A(1)B(1) by

the floating-point arithmetic, no rounding error occurs. Therefore, it is shown in [14,15] that the accuracy of the computed
result by A(1)B(1)

+ A(1)B(2)
+ A(2)B is better than that by the pure floating-point evaluation of AB in many cases.

In this paper, we improve an algorithm which produces A(1), A(2), B(1) and B(2) from A and B. As a result, the accuracy of
the approximation of AB by the new algorithm is improved, compared to the previous algorithms in many cases. Finally,
numerical results are presented to illustrate the efficiency of the proposed algorithm.

2. Notation and previous work

In this section, notation used in this paper is first introduced. The notation fl(· · ·)means that each operation in the paren-
thesis is performed by floating-point arithmetic defined by the IEEE 754-2008 standard as follows: fl(· · ·): roundTiesToEven,
fl△(· · ·): roundTowardPositive and fl▽(· · ·): roundTowardNegative, respectively. Let u be the relative rounding error unit,
especially, u = 2−53 for binary64 (so-called double precision). Assume that neither overflow nor underflow occurs in fl(· · ·).
Let e denote the vector of all one’s with appropriate length. For a ∈ R, ufp(a) denotes the unit in the first place [11], namely,
the leading bit of the binary representation of a. For 0 ≠ b ∈ F,

ufp(b) = 2⌊log2 |b|⌋, b ∈ 2u · ufp(b)Z. (1)
Exceptionally, we define ufp(0) := 0. Note that ufp(b) is easily calculated by three floating-point operations without
evaluating the logarithm [19]. MATLAB-like notation [20] is used for a representation of algorithms for readability. For
x, y ∈ Fn, x > y means that componentwise inequalities are always satisfied, namely, xi > yi for 1 ≤ i ≤ n. |x| means
that |x| = (|x1|, |x2|, . . . , |xn|)T . Similar notation is used for matrices.

We briefly introduce our previous algorithm: Algorithm 4.1 in [15], Accmul(A, B, 2, δ). For A ∈ Fm×n and B ∈ Fn×p, the
purpose is to obtain C ∈ Fm×p as an accurate approximation of amatrix product ABwith reasonable cost. Let a constant β be

β =


log2 n − log2 u

2


.

Two vectors σ ∈ Fm and τ ∈ Fp are defined by

σi = 2β
· 2vi , τj = 2β

· 2wj , (2)
where two vectors v ∈ Fm and w ∈ Fp are defined by

vi = ⌈log2 max
1≤j≤n

|aij|⌉ for max
1≤j≤n

|aij| ≠ 0, vi = 0 for max
1≤j≤n

|aij| = 0,

wj = ⌈log2 max
1≤i≤n

|bij|⌉ for max
1≤i≤n

|bij| ≠ 0, wj = 0 for max
1≤i≤n

|bij| = 0.

The following algorithm implemented in INTLAB [21] is useful for the calculation of 2vi and 2wj in (2).

Algorithm 1 (Rump). For g ∈ Fn, the following algorithm produces a vector h such that hi = 2⌈log2 |gi|⌉ (gi ≠ 0) and hi = 0
(gi = 0).

function h = NextPowerTwo(g)
q = fl(u−1

∗ g);
h = fl(abs((q − g) − q));

end

We obtain A(1) and A(2) by
A(1)

= fl

(A + σ · eT ) − σ · eT


, A(2)

= fl

A − A(1) .

Similarly, B is divided into B(1) and B(2) by
B(1)

= fl

(B + e · τ T ) − e · τ T  , B(2)

= fl

B − B(1) .

Then, it is proved in [15] that

A = A(1)
+ A(2), B = B(1)

+ B(2), A(1)B(1)
= fl(A(1)B(1)). (3)

Therefore,
AB = (A(1)

+ A(2))(B(1)
+ B(2)) = A(1)B(1)

+ A(1)B(2)
+ A(2)B.

We obtain an approximate result of the matrix multiplication AB by

AB ≈ fl(A(1)B(1)
+ (A(1)B(2)

+ A(2)B)). (4)
Finally, we write the algorithm in [15] which computes (4):
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