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a b s t r a c t

Multivariate normal stable Tweediemodels are recently introduced as an extension to nor-
mal gamma and normal inverse Gaussian models. The aim of this paper is to characterize
these models through their variance functions. Then, according to the power variance pa-
rameter values, the nature of polynomials associated with these models is deduced.
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1. Introduction

An important problem in statistical analysis is how to choose an adequate family of distributions or statistical model
to describe the study. For this purpose, the characterization theorems can be useful because, under general reasonable
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suppositions related to the nature of the experiment, they allow us to reduce the possible set of distributions that can be
used. One of these reasonable assumptions is that the normal stable Tweedie (NST) models [1] present particular forms of
variance functions based on the first component of mean vector and a probability measure which is not easy to handle. So, a
characterization by variance functions or by associated polynomials is required for the analysis related to this model. Recall
that variance function plays a significant role in the classification of natural exponential families (NEFs). Thus, the NEFs
can be characterized by variance functions obtained by successive differentiations of the Laplace transform of a positive
measure. Also, the variance functions are convenient to identify a family that is, for example, a Laplace transform to identify
a probability distribution.

Several methods of classification of NEFs are proposed by some authors, among which may be mentioned those of Mor-
ris [2] which classified all the NEFs with quadratic variance functions in the one dimensional case. This classification com-
prises some of the most common distributions like normal, Poisson, gamma, binomial, and negative binomial distributions.
Different characterizations of the Morris class involving orthogonal polynomials are due to Feinsilver [3], Meixner [4] and
Shanbhag [5]. An extension of these characterizations of NEFs in univariate and multivariate are also given these last years
by some authors. In univariate case for example, Letac and Mora [6] classified the real NEFs with cubic variance functions
and Hassairi and Zarai [7] characterized them by a property of 2-orthogonality. Kokonendji [8,9] characterized by d-pseudo-
orthogonality and by d-orthogonality of the Sheffer systems of theNEFswith polynomials variance functions of degree 2d−1
which are particular cases of the univariate stable Tweedie [10] class.

In the framework of multivariate NEFs, we first refer to Letac [11] which characterizes the Poisson–Gaussian families
by variance functions; see also [12] for the characterization of these families by determinant of covariance matrix, called
generalized variance function.More generally Casalis [13] classified all the 2d+4 simple quadratic NEFs onRd, which are the
d+1 types of Poisson–Gaussian families, the d+1 types of negativemultinomial-gamma-Gaussian families (see also [14] for
generalized variance function of the gamma-Gaussian type), themultinomial family and the hyperbolic family. See also [15]
for characterization of simple quadratic NEFswith a reversemartingale property. Also, Bar-Lev et al. [16] characterized in six
types the irreducible diagonalNEFs inRd which are: normal, Poisson,multinomial, negativemultinomial, gammaandhybrid.
About characterizations via polynomials we can cite the works of: Pommeret [17,18] for the characterization of simple
quadratic (resp. quadratic) NEFs by the orthogonal (resp. pseudo-orthogonal) polynomials or Sheffer systems; Hassairi and
Zarai [19] also Kokonendji and Zarai [20] for the transorthogonality or 2-pseudo-orthogonality of simple cubic multivariate
NEFs; and, we finally mention the work of Kokonendji and Pommeret [21] on the characterization of multivariate NEFs with
polynomial variance functions.

For an accurate presentation of this work, let us introduce some notations. Let k ∈ {2, 3, . . .}, we denote by (ei)i=1,...,k
an orthonormal basis of Rk and by Ik = Diagk(1, . . . , 1) the k × k unit matrix. For two vectors a = (a1, . . . , ak)⊤ ∈ Rk and
b = (b1, . . . , bk)⊤ ∈ Rk, we use the notations ⟨a, b⟩ = a⊤b and a ⊗ b = ab⊤ to denote the scalar

k
j=1 ajbj and the k × k

matrix

aibj

i,j=1,...,k respectively, and finally S


Rk

the set of symmetric matrices on Rk. Recall that, given a positive Radon

measure µ on Rk, we will use the Laplace transform Lµ and the cumulant function Kµ of µ defined, respectively, by

Lµ : Rk
→ (0,∞) , θ → Lµ(θ) :=


Rk

exp(⟨θ, x⟩)µ(dx)

andKµ(θ) := log Lµ(θ) on the non-empty interiorΘ(µ) of the domain {θ ∈ Rk
; Lµ(θ) < ∞}. We then denote byM(Rk) the

set of σ -finite positive measuresµ not concentrated on an affine subspace of Rk. Thus, forµ ∈ M(Rk), the set of probability
measures

F = F(µ) = {P(θ, µ)(dx) = exp[⟨θ, x⟩ − Kµ(θ)]µ(dx); θ ∈ Θ(µ)}

is called the NEF generated by µ. The measure µ is called a basis of F. For µ ∈ M(Rk),Kµ is strictly convex and real analytic
onΘ(µ), and for all θ ∈ Θ(µ) one has

K′

µ(θ) =


∂Kµ(θ)

∂θj


j=1,...,k

=


Rk

xP(θ,µ)dx =: m(θ)

and then

K′′

µ(θ) =


∂2Kµ(θ)

∂θi∂θj


i,j=1,...,k

=


Rk

[x − m(θ)] ⊗ [x − m(θ)]P(θ,µ)dx =: VF


m(θ)


.

Both functions m(θ) and VF


m(θ)


are, respectively, the mean and the variance–covariance matrix of F. The function K′

µ :

Θ(µ) → K′
µ (Θ(µ)) =: MF defines a diffeomorphism (see [22]),whereMF denotes themeandomain of F. So, letψµ : MF →

Θ(µ) be the inverse function of K′
µ. For all m = (m1, . . . ,mk)

⊤
∈ MF and setting P(m, F) = P(ψµ(m),µ) the probability

of Fwith meanm, we have F = {P(m, F);m ∈ MF}. Then, the covariance matrix of P(m, F) can be written as follows:

VF(m) = K′′

µ


ψµ(m)


=

ψ ′

µ(m)
−1

∈ S

Rk .
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