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a b s t r a c t

For solving saddle point problems, parameter acceleration methods which include Uzawa-
type methods are investigated by many researchers in the literature. In this paper, we
introduce the inexact Uzawa method with another parameter acceleration, that is, the so-
called momentum acceleration method for solving saddle point problems. We discuss the
convergence conditions of the inexact Uzawa iteration with momentum acceleration and
give the optimal momentum factors which minimize the spectral radii of the associated
iteration matrices. Numerical results demonstrate the effectiveness of the inexact Uzawa
method with momentum acceleration and the mixed parameter acceleration methods for
solving saddle point problems.
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1. Introduction

In this paper, we investigate parameter acceleration methods for saddle point problems. Consider the iterative solution
of a linear system with the following 2 × 2 block structure:

A X ≡


A BT

−B 0


x
y


=


f
g


≡ F , (1.1)

where A ∈ Rn×n is symmetric positive definite, B ∈ Rm×n is full row rank, f ∈ Rn, g ∈ Rm, andm ≤ n. We denote the range
space and the null space of A by R(A) and N (A), the conjugate transpose and transpose of A by A∗ and AT , respectively, and
I is an identity matrix of proper order.

Linear systems of the form (1.1) are often called saddle point problems,which arise inmany scientific and engineering ap-
plications [1], including computational fluid dynamics, constrained optimization, incompressible elasticity, circuit analysis,
structured analysis, and so forth. To solve the linear system (1.1), a number of iterative methods, including stationary itera-
tive methods and Krylov subspace iterative methods (often using preconditioners) have been proposed in the literature. In
this paperwe are concernedwith parameter acceleration or relaxationmethods, which include Uzawa-typemethods [2–10]
and SOR-type methods [3,11].

Generally speaking, the aboveparameter accelerationmethods require less arithmeticworkper iteration step thanKrylov
subspace iterative methods, but it is not so easy for parameter acceleration methods to choose optimal parameters in order
to minimize the spectral radii of the iteration matrices and obtain the fastest convergence. Uzawa-type methods cover the
classical and best known Uzawa method [2], preconditioned Uzawa (PreU) method [7] and parameterized Uzawa (ParU)
method [3], where Uzawa method and PreU method belong to single-parameter acceleration methods, and the optimal

E-mail addresses: nmzhang@wzu.edu.cn, nmzhang@aliyun.com.

http://dx.doi.org/10.1016/j.cam.2015.04.028
0377-0427/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2015.04.028
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2015.04.028&domain=pdf
mailto:nmzhang@wzu.edu.cn
mailto:nmzhang@aliyun.com
http://dx.doi.org/10.1016/j.cam.2015.04.028


170 N. Zhang / Journal of Computational and Applied Mathematics 288 (2015) 169–179

parameters of themarewell known. ParUmethod is a double-parameter accelerationmethod, it can be judged as one of SOR-
typemethods and is also called generalized successive overrelaxation (GSOR)method. Bai, Parlett andWang [3] establish the
convergence theory for GSOR and obtain the optimal parameters. Chao, Zhang and Lu [12] study the generalized symmetric
SORmethod (GSSOR) with two parameters and obtain the optimal parameters, and they find that the GSORmethod and the
GSSORmethod have the same optimal convergence factors, that is, the minimal spectral radii of their iteration matrices are
equal. Golub, Wu and Yuan [11] propose SOR-like (SORL) methods which belong to single-parameter acceleration methods,
and discuss the convergence and the optimal parameters. A complete version for the convergence theory of SORL methods
can be also found in [3]. Bai, Golub and Ng [13] propose the Hermitian and skew-Hermitian splitting (HSS) iterationmethod.
Furthermore, by making use of the HSS iteration technique, Bai and Golub [14,15] establish a class of double-parameter
accelerated Hermitian and skew-Hermitian splitting (AHSS) iteration methods, and obtain the quasi-optimal parameters
which minimize a best-possible upper bound of the corresponding iteration matrix’s spectral radius.

In this paper, we introduce another parameter accelerationmethod, that is, we give the so-calledmomentum acceleration
method for solving the linear system (1.1). The idea of momentum acceleration comes from neural network algorithms and
it is introduced by Rumelhart, Hinton and Williams [16]. Many researchers have developed the theory about momentum
and extended its applications, see, e.g., [17–23]. Here we point out that N. Qian studies its mechanisms. It is shown [19] that
in the limit of continuous time, the momentum factor is analogous to the mass of Newtonian particles that move through
a viscous medium in a conservative force field, and the behavior of the system near a local minimum is equivalent to a set
of coupled and damped harmonic oscillators. The momentum term improves the speed of convergence by bringing some
eigencomponents of the system closer to critical damping. And similar results can be obtained for the discrete time case
used in computer simulations. Taking the variablemomentum parameters, A. Bhaya et al. [17] establish various connections
between the conjugate gradient (CG) algorithm and the backpropagation algorithmwith momentum acceleration, and they
obtain an interesting result that the gradientmethodwithmomentum for quadratic functions is a version of the CGmethod.
In [22,23], the author discusses some elementary applications of momentum to numerical optimization and numerical
algebra. In this paper, we further make use of momentum to accelerate the convergence for solving saddle point problems.

The rest of this paper is organized as follows. In Section 2 we review some parameter acceleration methods and give
different representations for the inexactUzawamethodplusmomentum, that is, the inexactUzawamethodplusmomentum
can be regarded as both a semi-iterative method and a new stationary iteration method. In Section 3 we discuss the
convergence conditions of the inexact Uzawa iteration with momentum acceleration for solving saddle point problems,
and give the optimal momentum factors which minimize the spectral radii of the associated iteration matrices. Numerical
experiments are presented in Section 4. We examine the performance of the momentum acceleration, and compare the
different parameter acceleration methods with the preconditioned GMRES method. Finally, some conclusions are drawn in
Section 5.

2. Representations of parameter acceleration methods

In this sectionwebriefly reviewparameter accelerationmethods and give their representations. Firstwe give the abstract
inexact Uzawa (IU) algorithm [5] as follows:

Algorithm 2.1 (IU). Let Q1 ∈ Rn×n, Q2 ∈ Rm×m be two nonsingular matrices. Given initial vectors x(0)
∈ Rn and y(0)

∈ Rm,
for k = 0, 1, . . . , compute

x(k+1)
= x(k)

+ Q−1
1 (f − Ax(k)

− BTy(k)),

y(k+1)
= y(k)

+ Q−1
2 (Bx(k+1)

+ g).
(2.1)

In Algorithm 2.1, generally Q1 is an approximate matrix of A and Q2 is an approximate matrix of the Schur complement
matrix BA−1BT .

Denote

X (k)
=


x(k)

y(k)


, M =


Q1 0
−B Q2


. (2.2)

Then the iteration matrix T of IU is

T = I − M −1A =


I − Q−1

1 A −Q−1
1 BT

Q−1
2 B(I − Q−1

1 A) I − Q−1
2 BQ−1

1 BT


, (2.3)

and (2.1) can be written as

X (k+1)
= T X (k)

+ M −1F . (2.4)

It is known that the iteration (2.4) converges if and only if ρ(T ) < 1, where ρ(·) denotes the spectral radius of the
corresponding matrix.

With different choices of Q1 and Q2, Algorithm 2.1 covers several Uzawa-type algorithms and SOR-type algorithms as
follows.
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