A modified Tikhonov regularization method

Xiao-Juan Yang ${ }^{\text {a,b }}$, Li Wang ${ }^{\text {a,* }}$
${ }^{a}$ Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, PR China
${ }^{\text {b }}$ School of Mathematical Sciences, Nanjing Normal University, Taizhou College, Taizhou, 225300, PR China

A R T I C LE INFO

Article history:

Received 8 January 2014
Received in revised form 28 March 2015

MSC:

65 F 15
Keywords:
Tikhonov regularization
TSVD
Discrepancy principle
GCV
Arnoldi-based hybrid method

Abstract

Tikhonov regularization and truncated singular value decomposition (TSVD) are two elementary techniques for solving a least squares problem from a linear discrete ill-posed problem. Based on these two techniques, a modified regularization method is proposed, which is applied to an Arnoldi-based hybrid method. Theoretical analysis and numerical examples are presented to illustrate the effectiveness of the method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider a linear least-squares problem:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\|A x-b\|, \quad A \in \mathbb{R}^{m \times n}, m \geq n \tag{1}
\end{equation*}
$$

where and throughout this paper, $\|\cdot\|$ denotes the Euclidean vector norm or the corresponding induced matrix norm. The singular values of the matrix A are assumed of different orders of magnitude close to the origin and some of them may vanish. The minimization problem with a matrix of ill-determined rank is often referred to as a linear discrete ill-posed problem. It may be obtained by discretizing linear ill-posed problems, such as Fredholm integral equations of the first kind with a smooth kernel. This type of integral equations arises in science and engineering when one seeks to determine the cause (the solution) of an observed effect represented by the right-hand side b (the data). Because the entries of b are obtained through observation, they are typically contaminated by a measurement error and also by a discrete error. We denote these errors by $e \in \mathbb{R}^{n}$ and the unavailable error-free right-hand side associated with b by $\hat{b} \in \mathbb{R}^{n}$, i.e.,

$$
\begin{equation*}
b=\hat{b}+e \tag{2}
\end{equation*}
$$

We assume that a bound δ for which

$$
\|e\| \leq \delta
$$

[^0]is available, and the linear system of equations with the unavailable error-free right-hand side
\[

$$
\begin{equation*}
A x=\hat{b} \tag{3}
\end{equation*}
$$

\]

is consistent. Let \hat{x} denote a desired least-squares solution of (3) in the sense of the minimal Euclidean norm. We seek an approximation to \hat{x} by computing an approximate solution of the available linear system of equations (1). Due to the severe ill-conditioning of A and the error e on the right-hand side b, a solution of (1) typically does not yield a meaningful approximation of \hat{x}.

The discrete ill-posed problem (1) of small or moderate size is often solved by the truncated singular value decomposition (TSVD) or Tikhonov regularization, see [1,2] for details.

The basis of these two techniques is the singular value decomposition (SVD) defined as

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{4}
\end{equation*}
$$

where $U=\left[u_{1}, u_{2}, \ldots, u_{m}\right] \in \mathbb{R}^{m \times m}, U^{T} U=I, V=\left[v_{1}, v_{2}, \ldots, v_{n}\right] \in \mathbb{R}^{n \times n}, V^{T} V=I$ and

$$
\Sigma=\operatorname{diag}\left[\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right]
$$

Here $(\cdot)^{T}$ denotes transposition of (\cdot) and the singular values are ordered as

$$
\sigma_{1} \geq \sigma_{2} \geq \sigma_{l}>\sigma_{l+1}=\cdots=\sigma_{n}=0, \quad l=\operatorname{rank}(A)
$$

The minimum-norm least-squares solution $x_{L S}$ of (1) is

$$
x_{L S}=A^{+} b=\sum_{j=1}^{l} \frac{u_{j}^{T} b}{\sigma_{j}} v_{j}
$$

where $A^{+}=\sum_{j=1}^{l} v_{j} \sigma_{j}^{-1} u_{j}^{T}$ is the Moore-Penrose generalized inverse of A.
By ignoring some small singular values, we get the truncated SVD solution x_{k} given by

$$
\begin{equation*}
x_{k}=A_{k}^{+} b=\sum_{j=1}^{k} \frac{u_{j}^{T} b}{\sigma_{j}} v_{j} \tag{5}
\end{equation*}
$$

where $k(1 \leq k \leq l)$ is the truncated parameter and $A_{k}=\sum_{j=1}^{k} u_{j} \sigma_{j} v_{j}^{T}$.
We note that $x_{k} \in \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. The singular values σ_{j} and the coefficients $u_{j}^{T} b$ provide a valuable insight about the properties of the linear discrete ill-posed problem (1); see, e.g., [3,2] for a discussion on applications of the TSVD to the linear discrete ill-posed problems.

Instead of solving (1), Tikhonov regularization solves the minimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{\|A x-b\|^{2}+\mu^{2}\|L x\|^{2}\right\} \tag{6}
\end{equation*}
$$

which is commonly referred to as a regularization of the problem (1). The scalar $\mu>0$ is the regularization parameter, and the matrix $L \in \mathbb{R}^{p \times n}(p \leq n)$ is referred to as the regularization matrix, which is chosen either to be the identity matrix I, or a discrete approximation to a derivation operator. The minimization problem (6) is said to be in standard form when $L=I$ and in general form otherwise. Many examples of regularization matrices can be found in [4-7].

The matrix L is assumed to satisfy

$$
N(A) \cap N(L)=\{0\},
$$

where $N(\cdot)$ denotes the null space of (\cdot). Then the Tikhonov minimization problem (6) has a unique solution

$$
\begin{equation*}
x_{\mu}=\left(A^{T} A+\mu^{2} L^{T} L\right)^{-1} A^{T} b ; \tag{7}
\end{equation*}
$$

see, e.g., [1,2] for discussions on Tikhonov regularization.
The regularization parameter can be determined in a variety of ways; see, e.g., [8,1,2,9,10]. In our work, we apply the discrepancy principle $[1,2,10]$ to determine the truncation index k and the regularization parameter μ, so that

$$
\begin{align*}
& \left\|A x_{k}-b\right\| \leq \eta \delta, \tag{8}\\
& \left\|A x_{\mu}-b\right\|=\eta \delta \tag{9}
\end{align*}
$$

where x_{k} and x_{μ} are defined in (5) and (7) respectively, and $\eta \geq 1$ is a user-specified constant independent of δ and is usually fairly close to unity.

Thus the truncation index k satisfies

$$
\sum_{j=k+1}^{n}\left(u_{j}^{T} b\right)^{2} \leq(\eta \delta)^{2} \leq \sum_{j=k}^{n}\left(u_{j}^{T} b\right)^{2} .
$$

Properties of this method are discussed in, e.g., [1,2].

https://daneshyari.com/en/article/4638401

Download Persian Version:

https://daneshyari.com/article/4638401

Daneshyari.com

[^0]: the work is supported by the National Natural Science Foundation of China under grant 10971102, the Natural Science Foundation of Jiangsu Province of China under grant BK2009398.

 * Corresponding author.

 E-mail addresses: wangli1@njnu.edu.cn, wlsha@163.com (L. Wang).

