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a b s t r a c t

In this paper a numerical technique based on ameshlessmethod is proposed for solving the
time fractional reaction–subdiffusion equation. Firstly, we obtain a time discrete scheme
based on a finite difference scheme, thenwe use themeshless Galerkinmethod, to approx-
imate the spatial derivatives and obtain a full discrete scheme. In the proposed scheme,
some integrals appear over the boundary and the domain of problem which will be ap-
proximated using Gauss–Legendre quadrature rule. Then, we prove that the time discrete
scheme is unconditionally stable and convergent using the energy method. We show con-
vergence order of the time discrete scheme is O(τ γ ). The aim of this paper is to obtain
an error estimate and to show convergence for the meshless Galerkin method based on
the radial basis functions. Numerical examples confirm the efficiency and accuracy of the
proposed scheme.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years there has been a growing interest in the field of fractional calculus [1–4]. Fractional differential equations
have attracted increasing attention because they have applications in various fields of science and engineering [5]. Many
phenomena in fluidmechanics, viscoelasticity, chemistry, physics, finance and other sciences can be described very success-
fully by models using mathematical tools from fractional calculus, i.e., the theory of derivatives and integrals of fractional
order. Some of themost recent applications are given in the book of Oldhamand Spanier [3], the book of Podlubny [4] and the
papers of Metzler and Klafter [6], Bagley and Torvik [7]. Many considerable works on the theoretical analysis [8,9] have been
carried on, but analytic solutions of most fractional differential equations cannot be obtained explicitly. So many authors
have resorted to numerical solution strategies based on convergence and stability analysis [10,11,5,12–16]. Liu [17–19] has
carried on so many works on the finite difference method of fractional differential equations. Also we refer the interested
reader to [20] for an investigation on the numerical solution of fractional partial differential equations.

There are several definitions of a fractional derivative of orderα > 0 [3]. The twomost commonly used are the Riemann–
Liouville and Caputo definitions. The difference between the two definitions is in the order of evaluation [21].
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We start with recalling the essentials of the fractional calculus. The fractional calculus is a name for the theory of inte-
grals and derivatives of arbitrary order, which unifies and generalizes the notions of integer-order differentiation and n-fold
integration. We give some basic definitions and properties of the fractional calculus theory.

Definition 1 ([4]). For µ ∈ R and x > 0, a real function f (x) is said to be in the space Cµ if there exists a real number p > µ
such that f (x) = xpf1(x), where f1(x) ∈ C(0, ∞), and for m ∈ N it is said to be in the space Cm

µ if f m ∈ Cµ.

Definition 2 ([4]). The Riemann–Liouville fractional integral operator of order α > 0 for a function f (x) ∈ Cµ, µ ≥ −1, is
defined as

Jα f (x) =
1

Γ (α)

 x

0
(x − t)α−1f (t)dt, α > 0, x > 0, J0f (x) = f (x).

Also we have the following properties

Jα Jβ f (x) = Jα+β f (x), Jα Jβ f (x) = Jβ Jα f (x), Jαxγ
=

Γ (γ + 1)
Γ (α + γ + 1)

xα+γ .

Definition 3 ([4]). Letm be the smallest integer that exceeds α, the Caputo and Riemann–Liouville fractional derivatives of
order α > 0 are defined as, respectively

C
0D

α
t f (x) =


1

Γ (m − α)

 x

0
(x − t)m−α−1 dmf (x)

dxm


x=t

dt, m − 1 < α < m, m ∈ N,

dmf (x)
dxm

, m = α.

(1.1)

0Dα
t f (x) =


dm

dxm
1

Γ (m − α)

 x

0
(x − t)m−α−1f (t)dt, m − 1 < α < m, m ∈ N,

dmf (x)
dxm

, m = α.

(1.2)

Due mainly to the works of K. B. Oldham and his co-authors [22–29], electrochemistry is one of those fields in which
fractional-order integrals and derivatives have a strong position and yield practical results. Although the idea of using a

half-order fractional integral of current, 0D
−

1
2

t i(t), can be found also in the works of other authors, it was the paper by K. B.
Oldham [26] which definitely opened a new direction in the methods of electrochemistry called semi-integral electroanal-
ysis, later by semidifferential electroanalysis suggested by M. Goto and D. Ishii [30]. One of the important subjects for study
in electrochemistry is the determination of the concentration of analyzed electroactive species near the electrode surface.
The method suggested by K. B. Oldham and J. Spanier [29] allows, under certain conditions, replacement of a problem for
the diffusion equation by a relationship on the boundary (electrode surface). Based on this idea, K. B. Oldham [26] suggested
the utilization in experiment the characteristic described by the function

m(t) = 0D
−

1
2

t i(t),
which is the fractional integral of the current i(t), as the observed function, whose values can be obtained by measurement.
Then the subject of main interest, the surface concentration Cs(t) of the electroactive species, can be evaluated as

Cs(t) = C0 − k0D
−

1
2

t i(t), (1.3)
where k is a certain constant described below, and C0 is the uniform concentration of the electroactive species throughout
the electrolytic medium at the initial equilibrium situation characterized by a constant potential, at which no electrochem-
ical reaction of the considered species is possible. The relationship (1.3) was obtained by considering the following problem
for a classical diffusion equation [24]

∂C(x, t)
∂t

= D∗


∂2C(x, t)

∂x2


, 0 < x < ∞, t > 0,

C(∞, 0) = C0., C(x, 0) = C0,

D∗


∂C(x, t)

∂t


x=0

=
i(t)
nAF

,

(1.4)

where D∗ is the diffusion coefficient. A is the electrode area, F is Faraday’s constant and n is the number of electrons in-
volved in the reaction, the constant k in (1.3) is expressed as

k =
1

nAF
√
D∗

.
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