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a b s t r a c t

We introduce the Mixability Detection Procedure (MDP) to check whether a set of d distri-
bution functions is jointly mixable at a given confidence level. The procedure is based on
newly established results regarding the convergence rate of the minimal variance problem
within the class of joint distribution functions with given marginals. The MDP is able to
detect the complete mixability of an arbitrary set of distributions, even in those cases not
covered by theoretical results. Stress-tests against borderline cases show that the MDP is
fast and reliable.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and motivation of the paper

The definition of complete mixability for a univariate distribution has first been given in [1] and then extended to an
arbitrary set of distributions in [2].

Definition 1.1 (Wang andWang [1]). A univariate distribution function F is called d-completely mixable (d-CM) if there exist
d random variables X1, . . . , Xd identically distributed as F having constant sum a.s., that is satisfying

P(X1 + · · · + Xd = dc) = 1,

for some c ∈ R.

Definition 1.2 (Wang et al. [2]). The d univariate distribution functions F1, . . . , Fd are said to be jointly mixable (JM) if there
exist d random variables X1, . . . , Xd such that Xj

d
= Fj, 1 ≤ j ≤ d, and

P(X1 + · · · + Xd = C) = 1,

for some C ∈ R.
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It is straightforward that, if F in Definition 1.1 has finite first moment µ, then c = µ, and if each Fj in Definition 1.2 has
finite first moment µj, then C =

d
j=1 µj. The concept of risks with a constant sum goes back to [3], where the complete

mixability of a set of uniform distributions was showed. The same notion appears in [4], [5, Section 8.3.1] and [6] in the
context of variance minimization or as the safest aggregate risk, with a focus on random variables.

The notions of complete and jointmixability have recently gathered a lot of interest since they are related to the existence
of a least element with respect to convex order within the set

S(F1, . . . , Fd) := {X1 + · · · + Xd : Xj
d
= Fj, 1 ≤ j ≤ d}

consisting of all sums of random variables with given marginal distributions F1, . . . , Fd. In general the characterization of
S(F1, . . . , Fd): is known to be an open question for d ≥ 2 (see [7]); is equivalent to the study of joint mixability for d ≥ 3, by
simply observing that S+C ∈ S(F1, . . . , Fd) for some C ∈ R is equivalent to F1, . . . , Fd, F̃S are JM,where F̃S is the distribution
of −S. Recall that a random variable X is smaller than Y in convex order, denoted by X ≤cx Y , if E[f (X)] ≤ E[f (Y )] for all
convex functions f such that the expectations exist. When two random variables have the same mean, as within the set
S(F1, . . . , Fd), convex order is equivalent to increasing convex order (also known as stop-loss order) as defined in [5].

Let U be a U(0, 1) random variable. It is well known (see for instance [8]) that the greatest element wrt convex order in
S(F1, . . . , Fd) is given by the comonotonic sum F−1

1 (U) + · · · + F−1
d (U), where

F−1
j (p) =


inf{x ∈ R : Fj(x) > p}, if p ∈ [0, 1),
inf{x ∈ R : Fj(x) ≥ 1}, if p = 1,

is the generalized inverse (or quantile function) of Fj, 1 ≤ j ≤ d; see [9] for more details on the concept of comonotonicity
and several related results. In fact, we have that

X1 + · · · + Xd ≤cx F−1
1 (U) + · · · + F−1

d (U),

for any Xj
d
= Fj, 1 ≤ j ≤ d. When there are only two random variables, i.e. d = 2, the ≤cx-least element in S(F1, . . . , Fd) is

known to be the countermonotonic sum F−1
1 (U) + F−1

2 (1 − U), i.e.

F−1
1 (U) + F−1

2 (1 − U) ≤cx X1 + X2,

for any X1
d
= F1 and X2

d
= F2. When d > 2, the problem of determining the existence of a least element in S(F1, . . . , Fd) is

much more complicated as the notion of a countermonotonic sum with given marginals cannot be generalized to higher
dimensions; this was studied in [10], and we refer to [7,11] for recent discussions.

It is a trivial observation that if F1, . . . , Fd have finite means µ1, . . . , µd and are JM, the least element in S(F1, . . . , Fd) is
given by µ1 + · · · + µd, i.e.

µ1 + · · · + µd ≤cx X1 + · · · + Xd,

for any Xj
d
= Fj, 1 ≤ j ≤ d. Existence of ≤cx-least elements on sums and the corresponding conditions of complete/joint

mixability are involved in a variety of optimization problems in the theory of optimal couplings, as for example:

(i) Assume that F1, . . . , Fd have finite first moment µ1, . . . , µd with µ =
d

j=1 µj. For a (strictly) convex function
f : R → R, we have by Jensen’s inequality that

inf{E [f (X1 + · · · + Xd)] ; Xj
d
= Fj, 1 ≤ j ≤ d} ≥ f (µ), (1.1)

and equality holds if (and only if) F1, . . . , Fd are JM.
(ii) Assume that F1, . . . , Fd are continuous and have finite first moment. Let Xj

d
= Fj, 1 ≤ j ≤ d, and, for a ∈ [0, 1], define

the function

Ψ (a) =

d
j=1

E[Xj|Xj ≥ F−1
j (a)].

For any s ≥ µ, we have

M(s) = sup{P(X1 + · · · + Xd ≥ s); Xj ∼ Fj, 1 ≤ j ≤ d} ≤ 1 − Ψ −(s), (1.2)

where Ψ −(s) = sup{t ∈ [0, 1] : Ψ (t) ≤ s} and the sup is attained if and only if the conditional distributions of
(Xj|Xj ≥ F−1

j (Ψ −(s))) are JM.

Problems (1.1) and (1.2) have relevant applications in quantitative risk management, where they are needed to assess
the model risk associated to the computation of capital charges for a portfolio of losses for regulatory issues. For instance,
problem (1.1) is related to the computation of bounds on the expected value of a supermodular function [1,12] and on the
expected shortfall of a sum of random variables [13]. When f in (1.1) is chosen as f (x) = (x− µ)2, (1.1) becomes a variance
minimization problem, which is fundamental in variance reduction and simulation; see for example [14]. Problem (1.2), as



Download English Version:

https://daneshyari.com/en/article/4638454

Download Persian Version:

https://daneshyari.com/article/4638454

Daneshyari.com

https://daneshyari.com/en/article/4638454
https://daneshyari.com/article/4638454
https://daneshyari.com

