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a b s t r a c t

In this paper we propose new structures of fractal photonic crystal fiber (F-PCF) based on modifications of
second and third order Sierpinski fractal. These structures allow to confine the field in the center of the
fiber without the need for a differentiated core. This property could be applied to obtain an increase of the
effective area values and thereby reducing the nonlinear parameter. The values of the dispersion
parameter for this structures are also analyzed.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Photonic crystal fibers (PCFs) have attracted much interest in
the last years due to their applications in nonlinear optics, super-
continuum generation, soliton propagation and photonic signal
processing [1–6]. In the field of telecommunications the fiber’s
nonlinearities play a crucial role, the transmission of data through
the fiber in multichannel systems can be negatively influenced by
these nonlinear effects.

The large effective area fibers (LEAFs) have been studied in dif-
ferent fields of research for use in many applications such as fiber
lasers, attenuation of nonlinear effects and high-power delivery
systems [7]. The structural characteristics of the PCFs can be used
for this purposes, allowing to decrease the values of the fiber’s
nonlinear parameters.

The relationship between the effective area and the nonlinear
parameter is expressed by [8,9]
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n2 is the nonlinear-index coefficient and I(r) is the intensity of the
near-field of the propagating mode at radius r from the axis of the
fiber. So it would be desirable to work with the larger possible val-
ues of effective area to diminish the effect of the nonlinearity.

On the other hand, the nonlinear effects are often employed to
compensate the dispersion of the pulses. If we work with low non-
linear parameter values, the dispersion parameter must be also
small to avoid the distortion of the propagating pulse. The disper-
sion parameter is given by [10]

DðkÞ ¼ �k
c

d2neffðkÞ
dk2 ð3Þ

where neff is the effective index of the propagating mode.
In order to obtain the effective index and the field distribution

for a determined wavelength, the modal equations of the studied
fiber must be solved as an eigenvalue problem.

ðr2
t þ k2

0erÞEt þrtðe�1
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where the subscript t refers to the transverse component of the
electric field, er is a function of the relative dielectric constant of
the PCF geometry and h represents the propagation constant. The
real part of the calculated eigenvalue is related to the modal effec-
tive index by neff = h/k0, and the associated eigenvector gives us the
field distribution for this propagation mode [11]. Several methods
have been developed in order to solve this problem, a higher order
finite differences scheme has been employed in this paper.

Generally the air holes structure of a PCF can influence deci-
sively on the prior parameters. Propagation characteristics of the
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photonic crystal fibers with square-lattice structures have been
recently studied and reported [12,13]. We can even get a better
setting for the propagation if we combine the advantages of PCFs
with a fractal design [14]. In this paper we propose a F-PCF
designed from the modified fractal Sierpinski Carpet.

PCF’s are typically manufactured using a technique for stacking
silica capillary tubes equal size in a hexagonal lattice pattern [15],
but fibers with different geometries and size holes arrangement
have been described and manufactured from preforms of different
types [16]. In our case, the proposed fiber designing can be easily
manufactured from solid and hollow preform of different diameter
appropriately stacked.

The structure of the paper is as follows. In the second section it
is explained the design and characteristics of the modified Sierpin-
ski fractal PCF (SF-PCF). Then, in the third section, are showed the
results of the simulations and, finally, in the last section we
conclude the advantages of the SF-PCFs over others normal PCFs
(N-PCF).

2. Design of the SF-PCFs

The Sierpinski Carpet is a generalization of the Cantor set to two
dimensions [17–19]. The carpet is a fractal object that can be con-
structed by iteration. The construction of our modified carpet
begins with a square, which is cut into 9 congruent subsquares
in a 3 � 3 grid, and the central subsquare is removed. The same
procedure is then applied recursively. The Sierpinski Carpet is the
limit after an infinitum number of steps.

The 3D generalization of the carpet is the Menger sponge. This
object has been studied in its application in the field of photonic

Fig. 1. Schematic structures of the proposed second and third order SF-PCFs
respectively. The big squares length in all SF-PCFs is 1/9 of the simulation window,
middle squares in the third and fourth order SF-PCFs are 1/27 of the simulation
window, and small squares in the fourth order SF-PCF are 1/81 of the simulation
window. The cladding index in all three fibers is nclad = 1,42.

Fig. 2. Electric field’s total intensity distribution in the second order SF-PCF. The
field is confined in the nucleus of the fiber without the need of a differentiated core.

Fig. 3. Schematic structures of the hexagonal NF-PCF and SF-PCF of second order
with circular air holes. The distance between the air holes in the NF-PCF is K = 5 lm
and their radius Rair = 2 lm, the nucleus radius is Rnucleus = 2 lm and its index
nair = 1,45. In the SF-PCF the radius of the air holes is Rair = 1,78 lm. In both fiber the
cladding index is nclad = 1,42.
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