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a b s t r a c t

This paper deals with the asymptotic stability of numerical solutions for differential equa-
tions with piecewise continuous arguments (EPCAs). The necessary and sufficient condi-
tion is given for non-confluent Runge–Kutta methods to preserve the stability of nonlinear
scalar EPCAs. As for systems, we prove that some algebraically stablemethods can preserve
the asymptotic stability.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concernedwith the numerical stability of delay differential equationswith piecewise continuous arguments
(EPCAs)

x′(t) = f (t, x(t), x(Φ(t))), (1.1)
where Φ(t) is a piecewise continuous function. This equation arises in many biological models (see [1]). It is well known
that this equation contains results on the relationship between equationswith piecewise constant arguments and impulsive
equations. The study of the properties of analytic solutions of EPCAs has been initiated in [2–5]. In the book ofWiener [6], the
general theory and basic results for EPCAs have been listed. In recent years, some studies have been focused on the property
of numerical solutions for EPCAs. In [7–11], the authors investigated the convergence and the stability of one-step meth-
ods for linear equations. In [12], the author improved the linear multistep methods so that the methods can preserve their
convergent order for ODEs when applied to linear EPCAs. Recently, numerical stability of nonlinear EPCAs has attracted re-
searchers’ interest. In 2005, Li [13] discussed numerical asymptotical stability of a class of multistepmethods.Wang studied
the dissipativity and stability of Runge–Kutta methods for neutral differential equations in [14,15]. In this paper, we show
that some high order methods, beside implicit Euler method and 2-Lobatto-IIIC method (see [15]), can preserve the stability
of nonlinear EPCAs.

In this paper, we consider the equation:
y′(t) = f (t, y(t), y([t])), t ≥ 0,
y(0) = y0,

(1.2)

where f : [0, +∞) × RN
× RN

→ RN is a continuous function and [·] denotes the greatest integer function.
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In [8], some properties of the solution of (1.2) are presented.

Definition 1 (See [8]). A solution of (1.2) on [0, ∞) is a function y(t) that satisfies the following conditions:
(i) y(t) is continuous on [0, ∞);
(ii) the derivative y′(t) exists at each point t ∈ [0, ∞), with the possible exception of the points [t] ∈ [0, ∞) where

one-sided derivatives exist;
(iii) (1.2) is satisfied on each interval [n, n + 1) ⊂ [0, ∞) with integral end-points.

Let ⟨·, ·⟩ be an inner product on RN and ∥ · ∥ the corresponding norm. We assume that there exist real constants α and β
such that

⟨x1 − x2, f (t, x1, y) − f (t, x2, y)⟩ ≤ α∥x1 − x2∥2, ∀t ≥ 0, x1, x2, y ∈ RN ,

∥f (t, x, y1) − f (t, x, y2)∥ ≤ β∥y1 − y2∥, ∀t ≥ 0, y1, y2, x ∈ RN .

In order to study the stability of (1.2), we also consider the following equation
z ′(t) = f (t, z(t), z([t])), t ≥ 0,
z(0) = z0.

(1.3)

Using the same technique as Theorem 2.2 in [8], we can obtain the following theorem:

Theorem 2. If β ≤ −α, then ∥y(t) − z(t)∥ ≤ ∥y0 − z0∥ holds for all t ≥ 0.
If β < −α, then limt→+∞ ∥y(t) − z(t)∥ = 0.

As usual, we expect the numerical solution to reproduce the property of the true solution.

Definition 3. A numerical method is called contractive for (1.2) if the numerical solutions yn and zn of (1.2) and (1.3) at the
mesh points tn = nh, n ≥ 0 satisfies

∥yn − zn∥ ≤ ∥y0 − z0∥, ∀n ∈ Z+

for every stepsize h under the constraint hm = 1 wherem is a positive integer.

Definition 4. A numerical method is called asymptotically stable for (1.2) if the numerical solutions yn and zn of (1.2) and
(1.3) at the mesh points tn = nh, n ≥ 0 satisfies

lim
n→+∞

∥yn − zn∥ = 0

for every stepsize h under the constraint hm = 1 wherem is a positive integer.

2. Runge–Kutta methods

In this section we consider the adaption of the Runge–Kutta methods. Let h =
1
m be a given stepsize with integerm ≥ 1

and the gridpoints tn can be defined by tn = nh (n = 0, 1, . . .). Let (A, b, c) denote a given Runge–Kutta method with ν × ν
matrix A = (aij)ν×ν and vectors b = (b1, . . . , bν)

T , c = (c1, . . . , cν)T . The application of (A, b, c) in case of (1.2), yields

Y n
i = yn + h

ν
j=1

aijf (tn + cjh, Y n
j , Yj

n
), i = 1, . . . , ν,

yn+1 = yn + h
ν

i=1

bif (tn + cih, Y n
i , Yi

n
),

(2.1)

where Yi
n
is a given approximation to y([tn + cih]). Denote n = km+ l (l = 0, 1, . . . ,m− 1). Then Yi

n
can be defined as ykm

according to Definition 1 (i = 1, . . . , ν). Therefore, (2.1) reduces to

Y km+l
i = ykm+l + h

ν
j=1

aijf (tkm+l + cjh, Y km+l
j , ykm), i = 1, . . . , ν,

ykm+l+1 = ykm+l + h
ν

i=1

bif (tkm+l + cih, Y km+l
i , ykm).

(2.2)

Similarly application of the Runge–Kutta method in case of (1.3) yields

Zkm+l
i = zkm+l + h

ν
j=1

aijf (tkm+l + cjh, Zkm+l
j , zkm), i = 1, . . . , ν,

zkm+l+1 = zkm+l + h
ν

i=1

bif (tkm+l + cih, Zkm+l
i , zkm).

(2.3)
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