
Journal of Computational and Applied Mathematics 280 (2015) 275–293

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

On the stable solution of transient convection–diffusion
equations
N.R. Bayramov ∗, J.K. Kraus
Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Straße 69, 4040 Linz,
Austria

h i g h l i g h t s

• We consider transient convection–diffusion equation with dominating convection.
• The model has an application in optimal control of the asymmetric flow field-flow fractionation process.
• For a stable discretization we propose a monotone edge-averaged finite element (EAFE) scheme.
• EAFE is generalized to a time-dependent case and a new error estimate is proved.
• We present numerical results for comparison with a popular SUPG method.
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a b s t r a c t

A transient convection–diffusion equation is considered, which particularly arises in opti-
mization problems for the asymmetric flow field-flow fractionation (AF4) process. A time-
dependent generalization of the monotone edge-averaged finite element (EAFE) scheme
is used to obtain a stable discretization in the convection-dominated regime. New error
estimates are proved for this scheme and a comparison with the popular SUPG method is
presented. Numerical experiments demonstrate that the EAFE method is more suitable for
problems where boundary layers are formed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of the concentration of small particles ruled by an external velocity flow field plays an important
role in various applications in natural sciences and industry. Typically such problems are described mathematically by
convection–diffusion equations coupled with Stokes or Navier–Stokes equations, see e.g., [1,2].

It is well known that in the convection-dominated regime standard Galerkin approximations suffer from a loss of
monotonicity, whichmay result in spurious oscillations and instabilities [3,2]. These difficulties have already been observed
in context of finite difference approximations in the early 1960s. Pioneering works on the analysis of stable numerical
schemes for one-dimensional convection-dominated convection–diffusion equations has been conducted by Samarskii [4]
in context of finite difference and by Christie et al. [5] in context of finite element discretizations.

The Streamline-Upwind Petrov–Galerkin (SUPG) or Streamline-Diffusion (SD) finite element method, introduced by
Hughes and Brooks [6], see also [7–9], can be viewed as amultidimensional generalization of such optimal one-dimensional
upwind schemes. By adding a consistent diffusion term in streamline direction, this method provides a stable discretization
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tool for convection dominated transport equations. However, SUPG approximations may still develop boundary or internal
layers in the crosswind direction (orthogonal to the flow direction) resulting in numerical crosswind layers [10]. Several
so-called spurious oscillations at layers diminishing (SOLD) methods have been proposed since the mid 1980s with the aim
to remove this drawback [11,12], for an overview see also [13].

Other approaches to a stable numerical solution of (evolutionary) convection–diffusion–reaction equations include dis-
continuous Galerkin (DG) finite element methods, see, e.g., [14,15] and the references therein, local projection stabilization
(LPS) schemes [16,17], which are based on a scale separation and local projections into a larger-scale space, and finite el-
ement flux corrected transport schemes (FEM-FCT) [18,19]. Unlike in SUPG, SOLD, DG, or LPS schemes, FEM-FCT achieves
the stabilization by modifying the system matrix and the right hand side vector on the algebraic level. For an overview and
performance comparison of the above mentioned approaches see [20,21].

There are many applications, for example in semi-conductor device modeling [22,23] or in field-flow fractionation
processes [24], where it is desirable that the numerical scheme is monotone, which means that it preserves the maximum
principle. Here we consider a transient convection–diffusion problem arising in the optimal control of the asymmetric flow
field-flow fractionation (AF4) process, see [25]. The simulation of the AF4 process plays an important role in a number of
different applications in medicine, biology, and chemistry.

We study the edge-averaged finite element (EAFE) scheme,which has been proposed in [26] and generalized to problems
with tensor coefficients in [27], for transient convection–diffusion problems with a main focus on the aforementioned
application. The main contribution of this work concerns the application of this monotone scheme to time-dependent
problems, the derivation of a new error estimate (for the transient case), and an experimental comparison with the SUPG
method.

The remainder of the paper is organized as follows. In Section 2we introduce amathematical description of the problem.
Two stable discretizations (SUPG and EAFE schemes) of the state equation are discussed in Section 3, where we also present
a new error estimate for the EAFE scheme and comment on somemore general convection–diffusion problems. Section 4 is
devoted to numerical experiments.

2. Mathematical model

2.1. Problem statement

We consider a flow that satisfies the following Stokes equation:△V⃗ − ∇p = 0, inΩ,
∇ · V⃗ = 0, inΩ,
V⃗ = g⃗(u(t)), on ∂Ω.

(1)

Here V⃗ is the velocity field, p is the pressure, g⃗(u) is a certain prescribed boundary velocity function (depending on a vector
parameter u) and Ω is a bounded polygonal domain in Rd. One can see that, determined by the Dirichlet boundary data
g⃗(u(t)), the velocity flow V⃗ (·) = V⃗ (·; u(t)) is a function of a time-dependent control parameter u = u(t).

We study amass-conserving convection–diffusion equation for the concentration c(x, t) of particles or a substance driven
by the velocity flow V⃗ (x; u(t)) satisfying the system (1), that is,

∂
∂t c + ∇ ·


V⃗ c − ε∇c


= 0, (x, t) ∈ Ω × (0, T )

c(x, 0) = c0(x), x ∈ Ω
ε∇c − V⃗ c


· n⃗ = 0, (x, t) ∈ ∂Ω × (0, T )

(2)

where ε is a diffusion coefficient and n⃗ is the outward unit vector normal to the boundary ∂Ω .
According to the boundary condition (last equation in (2)) an appropriate choice of the space for a variational formulation

of problem (2) is V = H1(Ω). In other words we are looking for a function c(·, t) ∈ V which satisfies the system (2) at any
time moment t ∈ (0, T ).

Multiplying the first equation in (2) by an arbitrary test functionϕ ∈ V , integrating overΩ , using the divergence theorem,
and taking into account the incompressibility of the flow V⃗ (i.e., ∇ · V⃗ = 0) yields

0 = ⟨
∂
∂t c, ϕ⟩L2(Ω) + ⟨∇ · (V⃗ c − ε∇c), ϕ⟩L2(Ω)

=
∂
∂t ⟨c, ϕ⟩L2(Ω) + ⟨ϕ, (V⃗ c − ε∇c) · n⃗⟩L2(∂Ω) − ⟨V⃗ c − ε∇c,∇ϕ⟩L2(Ω).

Further, by using the boundary condition we obtain
∂
∂t ⟨c(t), ϕ⟩L2(Ω) +


ε∇c(t)− V⃗ c(t),∇ϕ


L2(Ω) = 0 ∀ϕ ∈ V ,

c(0) = c0,
(3)

where the first equation in (3) should be understood in the sense of distributions in (0, T ), that is, for a.e. t ∈ (0, T ), and the
initial condition is regarded as an equivalence of two elements of L2(Ω).
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