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• All necessary constraints are considered in our model.
• Alternating projection method is first used to update the finite element model.
• Numerical results are compared with the recent results.
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a b s t r a c t

A constrained matrix least-squares problem in structural dynamics model updating is
considered in this paper. Desired matrix properties, including the satisfaction of the lin-
ear equation, symmetric positive semidefiniteness and sparsity, are imposed as side con-
straints. Alternating projection method is applied to solve the constrained minimization
problem. The results of the numerical examples show that the proposed method works
well.
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1. Introduction

In this paper, we consider the following constrained matrix least-squares problem

min
1
2
∥X − X0∥

2
F

s.t. XA = B,
X = XT , X ≥ 0,

sparse(X) = sparse(X0),

(1)

where A, B ∈ Rn×m(m ≤ n) and X0 ∈ Rn×n are given matrices, X ≥ 0 means X is positive semidefinite, sparse(X) =

sparse(X0) denotes the sparsity requirement on X and ∥ • ∥F stands for the Frobenius norm of a matrix.
Problem (1) arises typically in the finite elementmodel updating in structural dynamics [1–3]. LetMa, Ka ∈ Rn×n and n be

the analytical mass matrix, stiffness matrix and the number of degrees of freedom of the finite element model, respectively.
The analyticalmodel of a real-life structure, obtained by the finite element technique,may be represented by the generalized
eigenvalue problem

Kax = λMax,
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where λ and x are the eigenvalue and corresponding eigenvector. Due to the complexity of the engineering structures,
the finite element models often fail to reproduce the dynamic behavior of the actual structures accurately. Hence, the fi-
nite element model should be updated and have definite physical meaning, such as the satisfaction of the dynamics equa-
tion, the nonnegativeness of energy and the structural connectivity. Such a procedure can be mathematically formulated as
problem (1).

In the past decades, special versions of problem (1) and its applications have received considerable discussions. Problems
of finding the best approximation to a given matrix subject to different kinds of linear constraints, symmetry and positive
semidefiniteness are discussed in [4–15]. Problems containing zero/nonzero pattern constraint and linear constraints can be
found in [16–19,5,20,21]. Recently, Yuan [22] considered problem (1) using subgradient algorithm for two different models.

Notice that problem (1) is a minimization of a strictly convex quadratic function over the intersection of a finite col-
lection of closed convex sets in Rn×n, we employ the alternating projection method to solve problem (1) which was firstly
proposed by Von Neumann [23] to find the projection of a given point in Hilbert space onto the intersection of two closed
subspaces. Cheney and Goldstein [24] extended Von Neumann’s result to two closed convex sets. Dykstra et al. [25,26] ad-
justed Von Neumann’s method slightly to ensure the convergence of the algorithm. Glunt et al. [27] applied alternating
projectionmethod on the approximation of distance matrices. Using Dykstra’s modified method, Escalante and Raydan [28]
solvedmatrix least-squares problem subject to symmetric positive definiteness constraint, box constraint and given pattern
constraint. Smith [29] discussed Dykstra’s alternating projection method in model updating problem to preserve sparsity,
symmetry and positive definiteness of property matrices. Using the same method, Moreno, Datta and Raydan [30] solved
symmetry preserving matrix model updating problem. However, at least one constraint of problem (1) is ignored.

Throughout this paper, the following notations will be used. For A ∈ Rn×m, A+ denotes the Moore–Penrose generalized
inverse of A, PS(A) represents the projection of A onto a closed convex set S, and specially, A+ is the orthogonal projection
of A onto the positive semidefinite cone. In is the n × n identity matrix. This paper is organized as follows. In Section 2,
we discuss the conditions ensuring the feasible region of problem (1) is nonempty. In Section 3, the alternating projection
method for problem (1) is presented. In Section 4, three numerical experiments are performed to illustrate the efficiency of
the proposed method. Conclusions are given in Section 5.

2. The feasible region

Denote the feasible region of problem (1) by D. Define

S1 = {X ∈ Rn×n
|XA = B, XT

= X, X ≥ 0} and
S2 = {X ∈ Rn×n

|sparse(X) = sparse(X0)}.

It is obvious that D = S1 ∩ S2. In this section, we deduce some conditions ensuring that the feasible region D is nonempty.

Lemma 2.1 ([31]). Let E ∈ Rn×n, F ∈ Rn×k, G ∈ Rk×k, H =


E F
FT G


. If HT

= H, then H ≥ 0 if and only if

E ≥ 0, G − F TE+F ≥ 0, and rank(E, F) = rank(E). (2)

Lemma 2.2. Let A, B ∈ Rn×m(m ≤ n). Assume that the singular value decomposition (SVD) of the matrix A is

A = U


Σ 0
0 0


V T , (3)

where U = [U1,U2] ∈ Rn×n, V = [V1, V2] ∈ Rm×m are orthogonal matrices, Σ = diag(σ1, . . . , σr) > 0, r = rank(A), U1 ∈

Rn×r and V1 ∈ Rm×r . Then the matrix equation

XA = B (4)

has a symmetric positive semidefinite solution if and only if

BV2 = 0, UT
1 BV1Σ

−1
= Σ−1V T

1 B
TU1 ≥ 0, and (5)

rank(UT
1 BV1Σ

−1, Σ−1V T
1 B

TU2) = rank(UT
1 BV1Σ

−1), (6)

in which case the solution X ∈ Rn×n is

X = U


UT
1 BV1Σ

−1 Σ−1V T
1 B

TU2

UT
2 BV1Σ

−1 G + UT
2 BV1Σ

−1(UT
1 BV1Σ

−1)+Σ−1V T
1 B

TU2


UT , (7)

where G ∈ R(n−r)×(n−r) is an arbitrary symmetric positive semidefinite matrix.

Proof. If Eq. (4) has a symmetric positive semidefinite solution X , left-multiplying two sides of Eq. (4) by AT yields ATXA =

ATB. Since ATXA is symmetric positive semidefinite, then so is ATB. From Eqs. (3) and (4), one has XU1ΣV T
1 = B. It follows
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