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a b s t r a c t

We consider the problem of approximating all real roots of a square-free polynomial f
with real coefficients. Given isolating intervals for the real roots and an arbitrary positive
integer L, the task is to approximate each root to L bits after the binary point. Abbott has
proposed the quadratic interval refinement method (QIR for short), which is a variant of
Regula Falsi combining the secant method and bisection. We formulate a variant of QIR,
denoted AQIR (‘‘Approximate QIR’’), that considers only approximations of the polynomial
coefficients and chooses a suitableworking precision adaptively. It returns a certified result
for any given real polynomial, whose roots are all simple. In addition, we propose several
techniques to improve the asymptotic complexity of QIR: We prove a bound on the bit
complexity of our algorithm in terms of the degree of the polynomial, the size and the
separation of the roots, that is, parameters exclusively related to the geometric location of
the roots. For integer coefficients, our variant improves, in theory and practice, the variant
with exact integer arithmetic. Combining our approach with multipoint evaluation, we
obtain near-optimal bounds that essentially match the best known theoretical bounds on
root approximation as obtained by very sophisticated algorithms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problem of computing the real roots of a polynomial in one variable is one of the best studied problems in mathe-
matics. If one asks for a certified method that finds all roots, it is common to write the solutions as a set of disjoint isolating
intervals, each containing exactly one root; for that reason, the term real root isolation is common in the literature. For integer
polynomials, simple, though efficient, methods for this problem have been presented, for instance, based on Descartes’ Rule
of Signs [1], or on Sturm’s theorem [2,3]. The majority of these methods exclusively performs exact arithmetic over rational
numbers, and thus returns a certified result. Recently, the focus of research shifted to polynomials with real coefficients,
which are approximated during the algorithm. It is worth remarking that this approach does not just generalize the integer
case but also leads to practical [4,5] and theoretical [6] improvements of it.

We consider the related real root refinement problem: assuming that isolating intervals of a polynomial are known, re-
fine them to a width of 2−L or less, where L ∈ N is an additional input parameter. The combination of root isolation and
root refinement, which we call strong root isolation, yields a certified approximation of all roots of the polynomial to an
absolute precision of 2−L or, in other words, to L bits after the binary point in binary representation. Abbott’s quadratic in-
terval refinement method [7] (QIR for short) is a hybrid of the bisection and the secant method, which eventually converges
quadratically (see Section 3). A straight-forward approach for refinement is to apply QIR to each isolating interval until the
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width becomes small enough. This approach combines the advantages of being certified (the refined interval is guaranteed
to contain a root), simple (in terms of implementation) and adaptive (the refinement processmight switch to quadratic con-
vergence much earlier than predicted by theory) and has therefore been used in several implementations where accurate
and certified approximations of real roots are required. Another advantage is that the polynomial is only queried through
polynomial evaluations; for instance, derivatives as in Newton iteration are not needed. The QIR approach has been analyzed
in [8] for integer polynomials: for a polynomial of degree d and τ -bit coefficients andm real roots, it requires Õ(d4τ 2

+md2L)
bit operations to refine all roots to L bits.

1.1. Our contributions

Our work generalizes [8] from integer to arbitrary real coefficients, without assuming that exact operations on real
numbers are available at unit cost. Instead, our approach works only with approximations of the input and exclusively
performs approximate but certified arithmetic, that is, in each step of our algorithm, errors which result from the use of
approximate arithmetic are bounded and taken into account using interval arithmetic.We assume the existence of an oracle
which, for an arbitrary positive integer ρ, provides approximations of the coefficients of the input polynomial to an error
of less than 2−ρ . We also quantify the size of ρ in the worst case. We obtain an algorithm, called Aqir (‘‘Approximate QIR’’)
that shares the traits of being certified, simple, and adaptive with its exact counterpart, given that arbitrary approximations
of the coefficients are accessible. We analyze the bit complexity of Aqir and give a bound that depends on the degree of the
polynomial, the size of its largest root and the separation of its roots; see Theorem22 and Section 2 for the precise statement.
We are not aware of a similar in-depth analysis of any related approach for real coefficients. Our analysis proceeds in a similar
way as [8], splitting the sequence of QIR steps in the refinement process into a linear sequence, where the method behaves
like bisection in the worst case, and into a quadratic sequence, where the interval is converging quadratically towards the
root; for technical reasons, we introduce an initial normalization phase thatmodifies the intervals to guarantee the efficiency
of our refinement strategy.

Remarkably, Aqir does not only generalize, but also improves the integer case: We obtain a bit complexity of Õ(d3τ 2
+

mdL) if all coefficients are τ -bit integers. Compared to [8], we get rid of one factor of d by a different approach for evaluating
the sign of f at rational points, which is the main operation in the refinement procedure. For an interval of size 2−ℓ, the
evaluation of f at the endpoints of the interval has a complexity of Õ(d2(τ + ℓ)) with exact rational arithmetic because the
function values can consist of up to d(τ +ℓ) bits. However, we show that we can still compute the sign of the function value
with certified numericalmethods using the substantially smaller working precision ofO(dτ+ℓ) if the distance to the closest
root is not much smaller than 2−ℓ. Thus, the crucial modification of Aqir is to ensure that the boundaries of an isolating
interval are sufficiently far away from the root that it contains; the details are described in Sections 4–6. Moreover, we show
by experimental comparisons (Section 7) that our asymptotic improvement is also reflected in practice: the ratio of running
times of exact and approximate QIR is proportional to the degree. Although Aqir is tailored to an accessible complexity
analysis and does not yield an efficient practical implementation without further modifications, our experiments show that
using approximate arithmetic is crucial for any efficient implementation of QIR.

We can further reduce the complexity of our method using the technique of fast approximate multipoint evaluation
[9–11]. With that approach, performing one refinement step on all isolating intervals simultaneously has the same cost
(up to logarithmic factors) as a single refinement step with classical evaluation. This yields a bit complexity of Õ(d3τ 2

+ dL)
for integer polynomials; the bound for polynomials with arbitrary real coefficients also scales like Õ(dL) for large L. Notice
that this bound is optimal up to logarithmic factors if L is the dominating factor and m = Θ(d) because the output com-
plexity is Θ(mL). We consider fast approximate multi-point evaluation as a purely theoretical tool to improve the bit (and
also the arithmetic) complexity. Although not hard to implement, an efficient realization is not easy to achieve and its ad-
vantages are unlikely to show up for instances that are currently feasible. For this reason, we refrained from implementing
the corresponding variant of Aqir.

1.2. Related work

The problem of accurate root approximation is omnipresent in mathematical applications; certified methods are of par-
ticular importance in the context of computations with algebraic objects, for instance, when computing the topology of
algebraic curves [12,13] or when solving systems of multivariate equations [14,15].

The theoretical complexity of approximating all complex roots has been investigated by Pan [16–18]. His approach com-
bines the splitting circle method [19] with techniques from numerical analysis (i.e. Newton iteration, Graeffes method,
discrete Fourier transforms) and fast algorithms for polynomial and integer multiplication. For polynomials with integer
coefficients, this yields an algorithm with a bit complexity of Õ(d2τ + dL) for approximating all roots to an accuracy of 2−L,
and, for square-free polynomials with arbitrary real coefficients, it still scales like Õ(dL) for large L; see [20,21] for details.
Our bound for AQIR matches this complexity if L is the dominant factor, but it is still inferior by a factor of dτ in the first
term. Still, we think that this does not turn our analysis obsolete because we show that almost optimal asymptotic bounds
can also be achieved with an easily implementable and practically efficient method. In contrast, as Pan admits in [22], the
splitting-circle method is difficult to implement and so is the complexity analysis when taking rounding errors in inter-
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