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a b s t r a c t

The waveform relaxation (WR) method is investigated for semi-linear partial differential
equations. Explicit error estimation is given for the iteration error. A way to combine WR
with convergent numerical methods is proposed, the error of the combined method is
analyzed and its convergence is proven. The effect of the application of time windows is
discussed. Numerical tests are presented to confirm the theoretical results.
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1. Introduction

The method of waveform relaxation (WR) is an iterative method which can be applied for a large class of problems. The
first description of the method can be found in [1], where it was used to approximate the solution of a system of ordinary
differential equations (ODEs) describing large scale circuits. Since then many works have been devoted to investigate the
convergence of themethod for different types of problems, for example [2–4]. All of them consider time dependent problems
that are either a system of ODEs originally or obtained from partial differential equations (PDEs) by spatial discretization.
The key to prove convergence in every case is the Lipschitz property of the function acting on the right hand side. A different
approach, the Schwarz waveform relaxation algorithm has been proposed to solve partial differential equations in [5–7].

In PDEs describing diffusion or advection processes the spatial differentiation is not a Lipschitz-continuous operation.
Consequently the usual formulation of WR fails when the method is applied directly on reaction–diffusion or reaction–
advection problems. Furthermore the convergence rates of the spatially discretized problem depend on the discretization
parameter thus the results cannot automatically be transferred to the original continuous model. The deterioration of con-
vergence rateswas highlighted in [8], whereWRwas used directly to a reaction–diffusion equation in one spatial dimension.
The proposed iteration in [8] provides faster convergence rate valid for PDEs. By providing better error estimates than the ex-
isting ones for the traditional WR process, [5] suggests that faster convergence can be achieved with a structurally different
approach, namely the decomposition of the space domain, not the acting operator in the equation.

The present work is an extension of [8] in two respects: using the concept of strongly continuous one-parameter semi-
groups, a large class of problems is discussed including systems of reaction–diffusion and reaction–advection equations in
multiple spatial dimensions; the given error estimations are refined and explicit—meaning that they do not contain the
solution of the problem itself.

The proposed application of the WR method here is to define the iteration without discretization, then solving the
subproblem of each iteration numerically, that is considering discretization of the subproblems. This scenario allows to
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investigate the effect of the numerical treatment as well, an overall error estimation can be formulated which includes the
iteration error and the cumulative numerical error.

The estimation of the iteration error suggests that faster convergence can be achieved by dividing the time interval into
subintervals and applying WR on these time windows one after another. This procedure is called windowing. Result on
convergence of windowing for ODEs is given in [9], the windowing technique is employed to accelerate the convergence of
the WR process in [10]. Here as an extension of these results, the convergence of windowing is proven for a large class of
PDEs.

After defining the class of problems that is the subject of this study Section 2 provides improved error estimates for the
applied WR which is the same as in [8]. In Section 3 the cumulative numerical error is introduced and an estimation of the
overall error is formulated. In the last parts of Sections 2 and 3 the results are formulated for reaction–diffusion problems
specifically. Section 4 contains the results on thewindowingprocess. Numerical test results are given in Section 5 to illustrate
the theoretical results of the previous Sections.

2. Waveform relaxation for semi-linear PDEs

Let (X, ∥·∥) be a Banach space,D(A),D(F) ⊂ X , suppose thatΩ := D(A)∩D(F) is an open connected set, u0 ∈ Ω, T ∈ R+.
Let A : D(A) −→ X be linear and F : D(F) −→ X a nonlinear operator. Consider the initial value problem

u′(t) = Au(t) + F(u(t)), u(0) = u0, (1)

with t ∈ [0, T ]. The derivative at t = 0 should be understood as the right hand derivative.
A classical solution of (1) is a continuously differentiable function u for which u(t) ∈ Ω for all t ∈ [0, T ]. This solution is

also the solution of the integral equation

u(t) = S(t)u0 +

 t

0
S(t − s)F(u(s))ds for every t ∈ [0, T ] (2)

with a properly defined set of bounded linear operators {S(t) : X → X, t ∈ [0, T ]}. Let the waveform relaxation method for
(1) be defined as

v′

i(t) = Avi(t) + F(vi−1(t)), vi(0) = u0, t ∈ [0, T ], (3)

where i ∈ I := {1, 2, . . . ,m}, with somem ∈ N (the number of iterations) and the starting iteration function v0(t) = u0 for
every t ∈ [0, T ]. With the same operators {S(t)}t∈R+

0
the solutions of the subproblems of (3) can be expressed as

vi(t) = S(t)u0 +

 t

0
S(t − s)F(vi−1(s))ds. (4)

The following two assumptions form the framework of this study, they will remain valid throughout this paper. Suppose
that

1. The operator A generates a strongly continuous semigroup S(t), with ∥S(t)x∥ 6 Meωt
∥x∥, for every x ∈ X and t ∈ [0, T ],

whereM and ω are nonnegative constants.
2. There is a closed ball Bδ(u0) with δ ∈ R+ and there is a constant L such that ∥F(v) − F(w)∥ 6 L∥v − w∥ for every

v, w ∈ Bδ(u0).

Under these assumptions (2) has a unique solution u, such that there is tδ ∈ R+ for which {u(t), t ∈ [0, tδ]} ⊂ Bδ(u0). It is
easy to see that if there is a classical solution to (1), then it is the solution of (2) as well. The existence of the solution of (2)
is investigated in many works such as [11] or [12].

For an extensive description of theory of semigroups see [13]. Here let us just recall a basic relation that is often used in
this section, see for example [13, p. 50]:

Lemma 1. If A generates a strongly continuous semigroup {S(t)}t∈R+

0
of bounded linear operators so that with ∥S(t)x∥ 6

Meωt
∥x∥, for every x ∈ X and t ∈ R+

0 , then for every x ∈ D(A)

S(t)x − x =

 t

0
S(s)Axds.

2.1. Iteration error

Using the concept of operator semigroup the results of [8] are extended to a large class of problems like (1). Furthermore
by deriving an estimate for ∥u(t) − u0∥ a sharper and explicit upper bound is provided for the iteration error, as opposed to
the estimate containing supt∈[0,T ] ∥u(t) − u0∥ used in the literature.
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