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a b s t r a c t

The flowfield of an annular Couette flow is predicted numerically from an unsteady initial
condition using the Chebyshev–Fourier collocation method. The numerical solution is ob-
tained from the vorticity–velocity formulation of the unsteady Navier–Stokes equations. In
this formulation the velocity boundary conditions are overspecified while vorticity bound-
ary conditions are unspecified. This difficulty is resolved by a matrix influence method to
convert the overspecified velocity boundary conditions to sufficiently specified Dirichlet
boundary conditions for both velocity and vorticity. These boundary conditions are imple-
mentedby considering threemethods: the traditional row replacementmethod, Fornberg’s
fictitious points method, and Driscoll and Hale’s rectangular collocation method. The solu-
tion is advanced in time using the third-order Adams–Bashforth semi-implicit backward
differentiation scheme. The accuracy of the numerical solutions are assessed in two ways.
In one case, the accuracy of the converged steady state solution is compared to the ana-
lytical solution. In the second case, the residual of the continuity equation for the vortic-
ity–velocity method is assessed in comparison to the vorticity streamfunction formulation
that inherently satisfies the continuity equation. All methods demonstrate high accuracy
for the continuity equation residual at the domain interior; however, the row replacement
and fictitious points methods exhibit poor accuracy at the boundaries during the transient.
The rectangular projectionmethod exhibits excellent accuracy throughout the domain and
boundaries at all times using the resampling points. On the other hand, for evaluating sec-
ondary quantities such as the wall shear stress, the rectangular projection method demon-
strates several orders of magnitude less accuracy when evaluated using the resampling
points, but high accuracy when evaluated directly at the original collocation points.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problem of annular Couette flow is studied as a vehicle for developing pseudospectral collocation methods to solve
the unsteady Navier–Stokes equations in the vorticity–streamfunction and vorticity–velocity formulations for the radial and
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Fig. 1. Annular Couette flow in Cartesian coordinates.

Fig. 2. Typical Chebyshev spacing for rectangular collocation method; top line represents a grid of N Chebyshev points of the second kind, the bottom line
represents the N − NBC Chebyshev points of the first kind.

azimuthal velocities in time and space subject to proper boundary conditions. Notwithstanding its engineering importance,
the solution in time and space is relatively scarce, but exact solutions exist under simplified cases. For example, the exact
solution for the spatial azimuthal velocity is already established under steady state conditions [1]. On the other hand, the
unsteady formulation for the azimuthal velocity as a function of the radial coordinate and time is suggested in terms of a
partial differential equation governing vorticity, which has the same form as the classical heat conduction equation [2]. The
problem formulation in time and space, radially and azimuthally, is attractive numerically for a number of reasons. First,
the steady-state annular Couette flow analytical solution exists, which provides a reliable basis for assessing the accuracy
and convergence of the developed solution through transients. Second, the domain is geometrically similar to that of flow
around a cylinder, assuming a circular farfield boundary, which is of great interest as a basis for steady solutions [3], and
unsteady solutions of vortex shedding [4]. Third, the pseudospectralmethod for a Couette flowbetween concentric cylinders
is extendable to eccentric cylinders [5]. Last but not least, the impervious domain,which limits the boundary conditions (BCs)
to no-slip walls, can be extended to a Couette flow with porous BCs [6].

Insofar as the pseudospectral method for the solution of the Navier–Stokes flow problem is concerned, much attention
was on nonprimitive variables, namely the vorticity–streamfunction formulation, referred to herein as the ω−ψ formula-
tion [7], as a system of two partial differential equations (PDE). The traditional challenge with a ω − ψ formulation is with
regard to the lack of BCs forω at no-slipwalls, while the BCs forω−ψ are overdefined, somuch so that imposing improper or
inconsistent BCs can lead to unstable solutions [8]. Furthermore, BCs inconsistencies that aremitigated in periodic problems
can lead to instabilities in nonperiodic problems [2]. In that regard, Napolitano, et al., [9] provide an excellent review of BCs
for the ω − ψ formulation despite the treatment limited to the finite difference and finite element methods. On the other
hand, Boyd and Flyer [10] offer a nice exposition on compatible initial and boundary conditions for 2D incompressible peri-
odic flow in a channel based on the Green’s function. The restriction of theω−ψ formulation to 2D is resolved by resorting
to a general hybrid primitive and nonprimitive variables in 3D, namely the vorticity–velocity formulation, referred to herein
as the ω − v formulation in which the system of PDEs over the domain of interest consists of the curl of velocity, vorticity
equation and continuity equation. Obviously, the latter equation is not satisfied directly as in theω−ψ formulation. In spite
of the advantage of theω−v formulation in 3D, the imposition of a set of compatible initial and boundary conditions is nec-
essary. Quartapelle [11] provides a thorough coverage of compatibility conditions, as well as alternative formulations with
the necessary BCs, primarily for open, bounded and simply connected fluid domain. For instance, one of the formulations in
2D consists of two PDEs, the vorticity equation, and the Laplacian of velocity in lieu of continuity equation. Various schemes
to solve the set of PDEs include the second-order centered difference method [12] along with the influence matrix method
for the BCs [13]; spectral-hp method [14], and the kinematic Laplacian equation method, which decouples vorticity in time
from velocity in a finite element space [15] to name a fewmethods. Othermethods to decouple pressure from velocity in the
Navier–Stokes equations include the projection method [16] and the gauge method [17,18], which are outside the scope of
this paper. Othermethods, such as the fourth-order streamfunction formulation [19], are also outside the scope of this paper.

In this paper, the rectangular collocation method [20] is applied to the ω− v formulation of an unsteady Couette flow in
an annular domain defined byΩ = [r1, r2]×[0, 2π ], as shown in Fig. 1. The set of PDEs consists of the vorticity equation, curl
of velocity and continuity equation. In this method, the computation process, coined resampling of a polynomial interpolant
by Driscoll and Hale [20], is carried out by projecting the differential and other operators at N − NBC points, as shown in
Fig. 2, where N is the number of the original Chebyshev grid points and NBC is the number of BCs.
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