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a b s t r a c t

In this paper, we develop and analyze a new class of spectral element methods for the
simulations of elastic wave propagation. The major components of the method are the
spatial discretization and the choice of interpolation nodes. The spatial discretization is
based on piecewise polynomial approximation defined on staggered grids. The resulting
method combines the advantages of both staggered-grid basedmethods and classical non-
staggered-grid based spectral elementmethods. Our newmethod is energy conserving and
does not require the use of any numerical flux, because of the staggered local continuity
of the basis functions. Our newmethod also uses Radau points as interpolation nodes, and
the resulting mass matrix is diagonal, thus time marching is explicit and is very efficient.
Moreover, we give a rigorous proof for the optimal convergence of the method. In terms of
dispersion, we present a numerical study for the numerical dispersion and show that this
error is of very high order. Finally, some numerical convergence tests and applications to
unbounded domain problems with perfectly matched layer are shown.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we will develop and mathematically analyze a new class of spectral element methods for the elastic wave
propagation. The major components of the method are the spatial discretization and the choice of interpolation nodes. The
spatial discretization is based on piecewise polynomial approximation defined on staggered grids. The resulting method
combines the advantages of both staggered-grid based methods and classical non-staggered-grid based spectral element
methods. We summarize below the main advantages of the proposed staggered spectral element method

(1) high order accurate,
(2) low dispersion error,
(3) optimal convergence,
(4) conservation of energy, and
(5) diagonal mass matrix.

We nowdescribe the problem setting. LetΩ be a bounded domain inR2 and T > 0 be a fixed time. Consider the following
elastic wave equation

ρ
∂2ux

∂t2
=

∂τxx

∂x
+

∂τxz

∂z
+ fx,

∗ Corresponding author.
E-mail addresses: tschung@math.cuhk.edu.hk (E.T. Chung), tfyu@math.cuhk.edu.hk (T.F. Yu).

http://dx.doi.org/10.1016/j.cam.2015.02.010
0377-0427/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2015.02.010
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2015.02.010&domain=pdf
mailto:tschung@math.cuhk.edu.hk
mailto:tfyu@math.cuhk.edu.hk
http://dx.doi.org/10.1016/j.cam.2015.02.010


E.T. Chung, T.F. Yu / Journal of Computational and Applied Mathematics 285 (2015) 132–150 133

ρ
∂2uz

∂t2
=

∂τxz

∂x
+

∂τzz

∂z
+ fz,

τxx = (λ + 2µ)
∂ux

∂x
+ λ

∂uz

∂z
,

τzz = λ
∂ux

∂x
+ (λ + 2µ)

∂uz

∂z
,

τxz = µ


∂ux

∂z
+

∂uz

∂x


.

In the above equations, u⃗ = (ux, uz)
t is the displacement vector, τ⃗ = (τxx, τzz, τxz)

t is the stress tensor and f⃗ = (fx, fz)t is
a given source term. The function ρ(x, z) is the density and λ(x, z), µ(x, z) are the Lamé coefficients. The above system is
transformed into the following first-order hyperbolic system

ρ
∂vx

∂t
=

∂τxx

∂x
+

∂τxz

∂z
+ fx, (1)

ρ
∂vz

∂t
=

∂τxz

∂x
+

∂τzz

∂z
+ fz, (2)

L
∂τxx

∂t
+ M

∂τzz

∂t
=

∂vx

∂x
, (3)

M
∂τxx

∂t
+ L

∂τzz

∂t
=

∂vz

∂z
, (4)

1
µ

∂τxz

∂t
=

∂vx

∂z
+

∂vz

∂x
, (5)

where we have introduced a new variable v⃗ = (vx, vz)
t

=


∂ux
∂t , ∂uz

∂t

t
, which is the velocity field. In Eqs. (1)–(5), we have

L =
λ+2µ

4µ(µ+λ)
and M = −

λ
4µ(µ+λ)

. The above problem is equipped with the homogeneous Dirichlet boundary condition
vx = vz = 0 on ∂Ω .

The numerical discretization of (1)–(5) is important in many geophysical applications [1], and the use of this mixed
formulation allows the velocity and the stress tensor to be directly computedby thenumerical scheme. There are in literature
many numerical schemes with various strength and weakness. In Virieux [2], a second order in space and time staggered
grid finite difference method is proposed for the system (1)–(5). Later in Levander [3], a fourth order in space and second
order in time staggered grid finite difference method is also developed for the system (1)–(5). The use of staggered grids
give many advantages described above.

The use of discontinuous Galerkin methods and spectral element methods have become popular in the numerical
discretization of partial differential equations. For example, Brezzi, Marini and Süli [4] developed a discontinuous Galerkin
method for the first order hyperbolic system, Gittelson, Hiptmair and Perugia [5] for the Helmholtz equation and Cockburn
and Shu [6] for the convection–diffusion equation. For an overview and introduction of the subject, see Hesthaven and
Warburton [7] and Riviére [8]. For the static elastic problems, discontinuous Galerkin methods have been proposed in Soon,
Cockburn and Stolarski [9] andWihler [10]. For the time dependent elasticwave propagation (1)–(5), discontinuousGalerkin
methods are proposed in Käser and Dumbser [11] and Basabe, Sen andWheeler [12]. In particular, the method of Käser and
Dumbser [11] uses classical discontinuous Galerkin discretization with the solution of a generalized Riemann-problem for
the numerical fluxes, while themethod of Basabe, Sen andWheeler [12] is based on the interior penalty formulation. On the
other hand, spectral element method has been first proposed for the elastic wave equations in Komatitsch and Tromp [13],
where high order Lagrange type basis functions are used on hexagonal elements. With the use of Gauss–Lobatto–Legendre
quadrature, the resulting method has a diagonal mass matrix, and is therefore very efficient. In terms of dispersion analysis,
the works Basabe, Sen andWheeler [12] and Seriani and Oliveira [14] analyze the dispersion errors for some discontinuous
Galerkin methods and spectral element methods, and show that these methods perform well.

Ourwork ismotivated by the following observation. It is known that staggered grid finite differencemethods give energy
conservation. Moreover, spectral element methods give high order methods with diagonal mass matrices. Therefore, it is
desirable to combine these ideas, and develop spectral element methods based on staggered grids.

Recently, a new class of discontinuous Galerkin methods based on a novel type of staggered grid is introduced in Chung
and Engquist [15,16] for the wave equations, in Chung and Lee [17] and Chung and Kim [18] for the curl–curl operator, in
Chung, Ciarlet and Yu [19] for Maxwell’s equations, in Chung and Lee [20] for the convection–diffusion equation, in Kim,
Chung and Lee [21] for the Stokes system and in Chan and Chung [22] for the Burgers equation.Moreover, wave transmission
problems in the interface between classical material andmeta-material using this kind of method is proposed and analyzed
in Chung and Ciarlet [23], and fast solvers have been developed in Chung, Kim andWidlund [24] and Kim, Chung and Lee [25,
26]. These methods have the advantages that the structures, such as energy and mass, arising from the partial differential
equations are preserved. Moreover, for time-dependent problems, the resulting mass matrices are block diagonal, giving
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