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a b s t r a c t

Elasticity theory is an important component of continuum mechanics and has had widely
spread applications in science and engineering.Material interfaces are ubiquitous in nature
and man-made devices, and often give rise to discontinuous coefficients in the governing
elasticity equations. In this work, the matched interface and boundary (MIB) method
is developed to address elasticity interface problems. Linear elasticity theory for both
isotropic homogeneous and inhomogeneous media is employed. In our approach, Lamé’s
parameters canhave jumps across the interface and are allowed to bepositiondependent in
modeling isotropic inhomogeneous material. Both strong discontinuity, i.e., discontinuous
solution, and weak discontinuity, namely, discontinuous derivatives of the solution, are
considered in the present study. In the proposed method, fictitious values are utilized
so that the standard central finite different schemes can be employed regardless of the
interface. Interface jump conditions are enforced on the interface, which in turn, accurately
determines fictitious values.We design newMIB schemes to account for complex interface
geometries. In particular, the cross derivatives in the elasticity equations are difficult
to handle for complex interface geometries. We propose secondary fictitious values and
construct geometry based interpolation schemes to overcome this difficulty. Numerous
analytical examples are used to validate the accuracy, convergence and robustness of the
presentMIBmethod for elasticity interface problemswith both small and large curvatures,
strong and weak discontinuities, and constant and variable coefficients. Numerical tests
indicate second order accuracy in both L∞ and L2 norms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Elasticity interface problems play significant roles in continuum mechanics in which elasticity theory and related gov-
erning partial differential equations (PDEs) are commonly employed to describe various material behaviors. For this class of
problems, an interface description in the elasticity theory is indispensable whenever there are voids, pores, inclusions, dis-
locations, cracks or composite structures inmaterials [1–4]. Elasticity interface problems are particularly important in tissue
engineering, biomedical science and biophysics [5–7]. In many situations, the interface is not static such as fluid–structure
interfacial boundaries [8]. Discontinuities in material properties often occur over the interface. Mathematically, there are
two types of discontinuities, namely, strong discontinuities and weak discontinuities. Strong discontinuities are referred
to situations where the displacement has jumps across the interface. In contrast, weak discontinuities are concerned with
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jumps in the gradient of the displacement, whereas the displacement is still continuous. In the linear elasticity theory, the
stress–strain relation is governed by the constitutive equations. For isotropic homogeneousmaterial, constitutive equations
can be determined with any two terms of bulk modulus, Young’s modulus, Lamé’s first parameter, shear modulus, Poisson’s
ratio, and P-wave modulus [9]. If these moduli are position dependent functions, related constitutive equations can be used
to describe elasticity property of isotropic inhomogeneous media. In seismic wave equations, inhomogeneity is accounted
by assuming Lamé’s parameters to be a position dependent function [10]. This model is also used in the elasticity analysis
of biomolecules [5–7].

The study of the analytical solution for elasticity interface problems dated back to Eshelby in 1950s [11,12]. Working on
inclusion and inhomogeneity problems, Eshelby found that for an infinite and elastically isotropic systemwith an ellipsoidal
inhomogeneity, the eigenstrain distribution is uniform inside the inhomogeneity when it is subjected to a uniformly applied
stress [11,12]. Much progress has been made on this area in the past few decades. Recently, semianalytic approaches for
finding stress tensors have been proposed for arbitrarily shaped inhomogeneity [13].

Computationally, elasticity interface problems are more difficult than the corresponding Poisson interface problems
because of the vector equation and cross derivatives. However, many numerical methods have been designed for elasticity
interface problems. Based on meshes used, these methods can be classified into two types, i.e., algorithms relied on
body-fitting meshes and algorithms based on special interface schemes. For the first type, meshes are generated to fit to
the geometry of the interface without cutting through the interface. Therefore, adaptive meshes with local refinement
techniques are frequently employed [14]. In the second type of algorithms, meshes are allowed to cut through the
interface and particular schemes are designed to incorporate the interface information into the element shape function
or discretization scheme. Immersed interface method (IIM) [15] has been used to solve elasticity interface problems for
isotropic homogeneous media [16,17]. In this finite difference based algorithm, a local optimization scheme is designed
for irregular grid points and the final linear equation with a non-symmetric matrix is solved by special solvers like BICG
or GRMES. Second order accuracy is obtained [16]. A second-order sharp numerical method has been developed for linear
elasticity equations [18]. Finite element based methods are also proposed for elasticity interface problems. Among them,
the partition of unity method (PUM), the generalized finite element method (GFEM) and extended finite element method
(XFEM) are developed to capture the non-smooth property of the solution over the interface by adding enrichment functions
to the approximation [3,4,2]. Through the weak enforcement of the continuity, discontinuous Galerkin based methods have
been employed to simulate strong and weak discontinuities [19–21]. Recently, immerse finite element (IFM) method has
been proposed to solve elasticity problems with inhomogeneous jump conditions [22–24]. In this approach, finite element
basis functions are adjusted locally to satisfy the jump conditions across the interface. Sharp-edged interface is considered
for a special elasticity interface problem [25]. Lin, Sheen and Zhang have proposed a bilinear IFM and further modified it to
a locking-free version [26,27]. For both compressible and nearly incompressible media, this method works well and offers
second order accuracy. Recently, immersed meshfree Galerkin method has also been proposed for composite solids [28].
Most recently, a Nitsche type method has been proposed for elasticity interface problems [29]. Given the importance
of elasticity interface problems in science and engineering, it is expected that more efficient numerical methods will be
developed for this class of problems in the near future.

The matched interface and boundary (MIB) method was originally developed for solving Maxwell’s equations [30] and
elliptic interface problems [31–35]. A unique feature of the MIB method is that it provides a systematic procedure to
achieve arbitrarily high order convergence for simple interfaces [30,33] and second order accuracy for arbitrarily complex
interface geometry [31,32]. The essential idea is to introduce fictitious values at irregular mesh points which form fictitious
domains [36] so that standard finite difference schemes can still be used across the interface. The lowest order interface
jump conditions are iteratively enforced at the interface which determines fictitious values on fictitious domains. Typically,
whenever possible, a high-dimensional interface problem is split into simple one-dimensional (1D) interface problems,
similar to our earlier discrete singular convolution algorithm [36]. Due to the great flexibility in the construction of fictitious
approximations, the MIB method has been shown to deliver up to 16th order accuracy for simple interfaces [30,33] and
robust second order accuracy for arbitrarily complex interface geometry with geometric singularities (i.e., non-smooth
interfaceswith Lipschitz continuity) [31,32] and singular sources [35]. In the past decades,MIBmethod has been applied to a
variety of problems. In computational biophysics, anMIB based Poisson–Boltzmann solver,MIBPB [37], has been constructed
for the analysis of the electrostatic potential of biomolecules [31,35,38], molecular dynamics [39] and charge transport
phenomenon [40,41]. Zhao has developed robust MIB schemes for the Helmholtz problems [42,43]. A second order accurate
MIB method is constructed by Zhou and coworkers to solve the Navier–Stokes equations with discontinuous viscosity and
density [44]. Recently, the MIB method has been used to solve elliptic equations with multi-material interfaces [45].

The objective of the present paper is to introduce the MIB method for solving elasticity interface problems. We consider
both strong and weak discontinuities for isotropic homogeneous and inhomogeneous media. Computationally, the cross
derivative terms in the elasticity model give rise to a new challenge for the MIB method when the interface geometry is
complex. To overcome this difficulty, we modify the traditional fictitious definition and redefine fictitious values. With
the MIB dimension splitting technique, a new fictitious representation is generated for each irregular mesh point based on
elastic jumpconditions and local geometry. Secondary fictitious values are constructed by the interpolation of these fictitious
values and function values. We have designed schemes to deal with both small curvature and large curvature for complex
interface geometries. To validate our method, analytical tests for different types of discontinuities and interface geometries
are constructed. We demonstrate the second order accuracy of our MIB schemes for elasticity interface problems.
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