Phase structure and asymptotic zero densities of orthogonal polynomials in the cubic model

Gabriel Álvarez ${ }^{\text {a }}$, Luis Martínez Alonso ${ }^{\text {a }}$, Elena Medina ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Departamento de Física Teórica II, Facultad de Ciencias Físicas, Universidad Complutense, 28040 Madrid, Spain
${ }^{\text {b }}$ Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain

ARTICLE INFO

Article history:

Received 14 July 2014
Received in revised form 21 November 2014

Keywords:

Standard cubic model
Phase transitions
Orthogonal polynomials

Abstract

We apply the method we have described in a previous paper (2013) to determine the phase structure of asymptotic zero densities of the standard cubic model of non-Hermitian orthogonal polynomials. We provide a complete description of the two phases: the one cut phase and the two cut phase, and analyze the phase transition processes of the types: splitting of a cut, birth and death of a cut.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Orthogonal polynomials in which the weight can be a complex function and the integration path can be a general curve in the complex plane (non-Hermitian orthogonal polynomials) first appeared in the mathematical literature as denominators of Padé and other types or rational approximants [1-4]. The theory quickly developed and found applications into such fields as the Riemann-Hilbert approach to strong asymptotics, random matrix theory [5-10] and in the study of dualities between supersymmetric gauge theories and string models [11-15]. This paper is devoted to a detailed analysis of the phase structure and phase transitions of the asymptotic (in the limit $n \rightarrow \infty$) zero density of monic orthogonal polynomials $P_{n}(z)=z^{n}+\cdots$

$$
\begin{equation*}
\int_{\Gamma} P_{n}(z) z^{k} \mathrm{e}^{-n W(z)} \mathrm{d} z=0, \quad k=0, \ldots, n-1 \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
W(z)=\frac{z^{3}}{3}-t z \tag{2}
\end{equation*}
$$

and t is an arbitrary complex number. The curve Γ is an infinite path connecting any two of the three different sectors shaded in Fig. 1 on which $\operatorname{Re}\left(z^{3}\right)>0$, so that the integral in (1) is convergent and nonzero. Since the three possible choices are trivially related, without loss of generality we choose Γ as the curve connecting the two sectors with $\operatorname{Re}(z)<0$.

The particular case $t=0$ of this model has been rigorously studied by Deaño, Huybrechs and Kuijlaars [16], and recent results for $t \in \mathbb{R}$ have been communicated by Lejon [17]. The phase structure of the corresponding random matrix model has been studied by David [18] and Mariño [11].

[^0]

Fig. 1. The three regions of the complex z plane with $\operatorname{Re}\left(z^{3}\right)>0$ and the curve Γ.
To perform our analysis we follow the method described in [19], which is applicable to study orthogonal polynomials with respect to general potentials

$$
\begin{equation*}
W(z)=\sum_{k=1}^{N} t_{k} z^{k} \tag{3}
\end{equation*}
$$

and appropriate choices of Γ. This method is based on the existence of a unique normalized equilibrium charge density that minimizes the electrostatic energy (among all normalized charge densities supported on the curve Γ) in the presence of the external electrostatic potential $V(z)=\operatorname{Re} W(z)$ [20]. The method in [19] also relies heavily on the concepts of S-property and S-curve of Stahl [1-4] and of Gonchar and Rakhmanov [21-23], and on the fundamental result of Gonchar and Rakhmanov [21] asserting that if Γ is an S-curve, then the asymptotic zero density of $P_{n}(z)$ exists and is given by the equilibrium charge density of the associated electrostatic model. Note that the integral (1) is invariant under deformations of the curve Γ into curves in the same homology class and connecting the same two convergence sectors at infinity. Recent results of Rakhmanov [23] and of Kuijlaars and Silva [24] show that for any family of orthogonal polynomials of the form (1) there always exists a deformation of Γ into an appropriate S-curve. We will make extensive use of certain algebraic curves (called spectral curves) which have the form

$$
\begin{equation*}
y^{2}=W^{\prime}(z)^{2}+f(z) \tag{4}
\end{equation*}
$$

where $f(z)$ is a polynomial of degree $\operatorname{deg} f=\operatorname{deg} W-2$. More concretely, the main parameters that determine the S-curves and the associated equilibrium densities are the branch points of $y(z)$, which turn out to be the endpoints of the (in general, several disjoint) arcs that support the equilibrium density. The corresponding cuts are characterized as Stokes lines of the polynomial $y(z)^{2}$ or, equivalently, as trajectories of the quadratic differential $-y(z)^{2}(\mathrm{~d} z)^{2}$. At this point numerical analysis will be necessary not only to solve the equations for the endpoints but also to analyze the existence of cuts satisfying the S-property.

The paper is organized as follows. In Section 2 we recall the main ingredients of the method presented in [19], namely, the relation between the electrostatic problem and the asymptotic zero density of the orthogonal polynomials, the S-property, and the notion of spectral curve. In Section 3 we determine the region of the complex t-plane in which the asymptotic density of zeros of the orthogonal polynomials is supported on a single cut (the one-cut phase of the cubic model (2)), and for each t in this region we calculate the corresponding S-curve and zero density. Since the number of disjoint arcs on which the asymptotic density of zeros is supported is less than or equal to $\operatorname{deg} W-1$, the complement of the one-cut phase in the complex t-plane must be the region wherein the asymptotic density of zeros is supported on two disjoint arcs (the two-cut phase); we study this case in Section 4 . Section 5 is dedicated to the study of phase transitions. We characterize critical processes of splitting, birth and death at a distance of cuts. The consistency of our results is checked in Section 6 by superimposing the cuts and the zeros of the corresponding orthogonal polynomials $P_{n}(z)$ with degree $n=36$.

2. Zero densities of orthogonal polynomials and spectral curves

According to the general theory of logarithmic potentials with external fields [20], given an analytic curve Γ in the complex plane and a real-valued external potential $V(z)$, there exists a unique charge density $\rho(z)$ that minimizes the total electrostatic energy

$$
\begin{equation*}
\mathcal{E}[\rho]=\int_{\Gamma}|\mathrm{d} z| \rho(z) V(z)-\int_{\Gamma}|\mathrm{d} z| \int_{\Gamma}\left|\mathrm{d} z^{\prime}\right| \log \left|z-z^{\prime}\right| \rho(z) \rho\left(z^{\prime}\right) \tag{5}
\end{equation*}
$$

https://daneshyari.com/en/article/4638494

Download Persian Version:
https://daneshyari.com/article/4638494

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: galvarez@fis.ucm.es (G. Álvarez), luism@fis.ucm.es (L. Martínez Alonso), elena.medina@uca.es (E. Medina).

