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a b s t r a c t

Multiple orthogonal polynomials on the unit circle (MOPUC)were introduced by J.Mínguez
and W. Van Assche for the first time in 2008. Some applications were given there and re-
currence relations were obtained from a Riemann–Hilbert problem.

This paper is a second contribution to this field.We first obtain a determinantal formula
for MOPUC (multiple Heine’s formula) andwe analyze the concept of normality, from a dy-
namical point of view and by presenting a first example: the combination of the Lebesgue
and Rogers–Szegőmeasures. Secondly, we deduce recurrence relations forMOPUCwithout
using Riemann–Hilbert analysis, only by considering orthogonality conditions. This new
approach allows us to complete the recurrence relations in the situation when the origin
is a zero of MOPUC, a case that was not considered before. As a consequence, we give an
appropriate definition of multiple Verblunsky coefficients. A multiple version of the well
known Szegő recurrence relation is also obtained. Here, the coefficients that appear in the
recurrence satisfy certain partial difference equations that are used to present a recursive
algorithm for the computation of MOPUC. A discussion on the Riemann–Hilbert approach
that also includes the case when the origin is a zero of MOPUC is presented. Some conclu-
sions and open questions are finally mentioned.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and OPUC

This paper is devoted to the study ofMultiple Orthogonal Polynomials on the Unit Circle (fromnowon,MOPUC), specially
from the point of view of their recurrence relations and their recursive computation.

Despite what occurs in the case where the supports of the measures are on the real axis (see e.g. [1]), the situation when
dealing with measures supported on the unit circle is barely studied up to now, to the extent that it is possible to mention a
unique previous reference in this sense [2]. Therefore, the renewed interest in recent years by the orthogonal polynomials in
the Unit Circle (OPUC, also called Szegő polynomials), specially after the publication of the monograph [3], demands further
study on MOPUC. In particular, in [2] it is pointed out the usefulness of such polynomials both for two-point Hermite–Padé
approximation to Carathéodory functions (playing a similar role as their counterparts in the real axis with respect to the
Markov functions) and for linear prediction in multivariate time series. In addition, we are also interested in the study of
simultaneous quadrature rules in the unit circle (see e.g. [4–6], among others, for the real case).

In the real case, in addition to the abovementionedmonograph by Nikishin and Sorokin [1], it is worthmentioning some
seminal papers about multiple (or Hermite–Padé) orthogonal polynomials, such as [7–11], and more recently, [12–14], to
cite only a few. For our purposes in the present paper, it is also remarkable that in [15] the characterization of orthogonal
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polynomials by means of a matrix Riemann–Hilbert problem (see [16]) was extended for multiple orthogonal polynomials
and employed to get suitable recurrence relations. As it was said above, aboutMOPUC there is only a previous Ref. [2], where
the Riemann–Hilbert analysis is also used to derive recurrence relations.

In the present paper, we are concerned with type II MOPUC, following the denomination coined for Multiple Orthogonal
Polynomials on the Real Line. The reason of considering only type II MOPUC, and not Type I, is due to our further interest in
studying simultaneous quadrature formulae in the unit circle.

Now, it is convenient to start with some convention for notation. We denote by T := {z ∈ C : |z| = 1} the unit circle of
the complex plane and by D := {z ∈ C : |z| < 1} and E := {z ∈ C : |z| > 1} its interior and exterior, respectively. P := C[z]
is the complex vector space of polynomials in the variable z with complex coefficients and Pn := span{1, z, . . . , zn} the cor-
responding vector subspace of polynomials with degree less than or equal to n. For a given polynomial Pn ∈ Pn\Pn−1 we
define its reversed (or reciprocal) as P∗

n (z) = znPn(1/z̄) ∈ Pn. Also, the vector space of square matrices with complex
coefficients and dimension nwill be denoted by Mn.

Letµ be a positive measure with support on T. We consider the Hilbert space Lµ2 (T) of measurable functionsψ for which π
−π

ψ(eiθ )2 dµ(θ) < +∞ and the inner product induced byµ is given by ⟨φ, ϕ⟩µ =
1
2π

 π
−π
φ(z)ϕ(z)dµ(θ), whereφ, ϕ ∈

Lµ2 (T) and z = eiθ . Observe that ⟨znf , g⟩µ = ⟨f , z−ng⟩µ. We denote by {ρn}
∞

n=0 the sequence of monic orthogonal polyno-
mials on the unit circle (OPUC) for µ, or Szegő polynomials (see [17, Chapter 11]). Namely, setting ρ0 = ρ∗

0 ≡ 1, for each
n ≥ 1, ρn is a monic polynomial of exact degree n satisfying

⟨ρn(z), zs⟩µ = ⟨ρ∗

n (z), z
t
⟩µ = 0 for all s = 0, 1, . . . , n − 1, t = 1, 2, . . . , n,

∥ρn∥
2
µ = ⟨ρn(z), zn⟩µ = ∥ρ∗

n∥
2
µ = ⟨ρ∗

n (z), 1⟩µ > 0.

It is very well known that the polynomials ρn and ρ∗
n have all its zeros on D and E, respectively (see [17, Theorem 11.4.1]).

For our purposes in Section 3, let us recall a way to obtain the well known Szegő recurrence relation (see [17, Theorem
11.4.2]). The monic polynomial zρn−1 ∈ Pn\Pn−1 is orthogonal to span{z, . . . , zn−1

} (as the polynomial ρ∗

n−1 ∈ Pn−1). If
occasionally ⟨zρn−1, 1⟩µ = 0, then it must hold ρn = zρn−1. On the contrary, if we set Rn := zρn−1 + δnρ

∗

n−1 ∈ Pn\Pn−1,
with δn an arbitrary constant, then we can choose it so that ⟨Rn, 1⟩µ = 0. More precisely, when

δn = −
⟨zρn−1, 1⟩µ
⟨ρ∗

n−1, 1⟩µ
, (1)

(which is well defined and it is different from zero in this case), then it must hold Rn = ρn. In general, in the computation of
ρn we need ρn−1 and ρ∗

n−1, so it is often to find this recurrence written in matrix form as
ρn
ρ∗

n


=


z δn
δnz 1


ρn−1
ρ∗

n−1


, n = 1, 2, . . . . (2)

The parameters δ0 = 1 and δn = ρn(0) ∈ D for all n ≥ 1 are called the reflection, Schur or Verblunsky coefficients associated
with µ, see [3, Chapter 1.5].

Let us consider the Hermitian sequence of trigonometric moments ek := ⟨zk, 1⟩µ, e−k = ek for k ≥ 0, that we assume
that are known in advance. If we have computed ρn−1 in the iteration n − 1, from {ek}nk=−n we obtain δn from (1) and hence
we can compute ρn from (2). We notice also that from (2) we can deduce the following three-term recurrence relation for
Szegő polynomials that is only valid if the Verblunsky coefficient δn−1 does not vanish:

ρn(z) =


δn

δn−1
+ z


ρn−1(z)−

δn

δn−1


1 − |δn−1|

2 zρn−2(z). (3)

A determinantal formula for Szegő and their reversed polynomials is very well known. Indeed, if ∆n denotes the nth
Toeplitz matrix for µ i.e.,

∆n :=


e0 e1 · · · en
e−1 e0 · · · en−1
...

...
. . .

...
e−n e−n+1 · · · e0

 ∈ Mn+1, (det∆n ≠ 0) , n ≥ 0, (4)

then it holds (Heine’s formula)

ρn(z) =
1

det∆n−1



e0 e1 · · · en
e−1 e0 · · · en−1
...

...
...

...
e−n+1 e−n+2 · · · e1

1 z · · · zn


, n ≥ 1, (5)
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