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1. Introduction

In 1904 Hermann Minkowski [23] introduced an interesting function, which he called the question mark function and
he denoted its values by ?(x). This notation with a question mark is somewhat confusing, so instead we will denote the
function by g and we will only consider it on the interval [0, 1].

There are several ways to define the Minkowski question mark function. Minkowski used the following construction: let
M be the sequence with two elements 0 and 1 and define g(0) = 0 and g(1) = 1. The sequence .M, then consists of M; and
the new point (0 + 1)/(1 4+ 1) = 1/2 and q(1/2) = 1/2.In general we construct the Minkowski sequence My by taking all
the elements from My_; and all the “mediants” (a+a’)/(b+b’) of two consecutive rational numbers a/band a’ /b’ in My_1,
where we take 0 = 0/1 and 1 = 1/1. Then the Minkowski question mark function on the new points takes the values

(a + a’) _ q(a/b) +q(d'/b")
b+b) 2 '
The Minkowski sequence My is dense in [0, 1]as N — oo and q(x) for x € [0, 1] \ Q is defined by continuity. Observe that
My contains 281 + 1 points.

Another way to define the question mark function is by using continued fractions [13]. If 0 < x < 1 then we can write x

as a regular continued fraction

1
x=——7,——, @ €€N\{0}
SO — —
2 a3+i
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The Minkowski question mark function at x is then defined as

( 1)k+l
q(X) =2 Z 2a1+ay+-- +ay

If x is a rational number, then the continued fraction is terminating and q(x) is given by a finite sum. By setting q(0) = 0 and
q(1) = 1one canshow thatq : [0, 1] — [0, 1] is a continuous and increasing function, so that q is a probability distribution
function on [0, 1] which defines a probability measure on [0, 1]. Arnaud Denjoy [ 14] showed that this distribution function
has the property that q'(x) = 0 almost everywhere on [0, 1] so that the corresponding measure is singular and continuous.

A third way is to define the question mark function as a fixed point of an iterated function system with two rational
functions. One has

1 X 1
Eq 1-x)° 0<x=< 5
40 T (1)
1——¢q , —<x<1,
2 X 2
and one can easily show that the sequence of probability distribution functions (¢,)nen, With
1 X 0<x< 1
(X) 2(11171 1_x ) =4\ = 27
n . 1-x\ 1 _
— Z0n- , T <X=1
2 qn—1 X 2

and qo any probability distribution on [0, 1], converges uniformly to Minkowski’s question mark function. We have used
this method to plot the question mark function in Fig. 1. This allows us to compute integrals by a limit procedure

1 1
/ f) dgq(x) = lim / F ) dg(x).
0 n—oo 0

In 1943 Raphaél Salem posed a problem about the Fourier coefficients of Minkowski’s question mark function:

1
o :/ eZime dq(x)
0

The Riemann-Lebesgue lemma tells us that Fourier coefficients of an absolutely continuous measure on [0, 1] tend to zero.
The Minkowski question mark function is singularly continuous, so one cannot use the Riemann-Lebesgue lemma. Never-
theless, the support of q is the full interval [0, 1] and it was proved by Salem [27] that g is Holder continuous of order o« =

log2/(2log @) = 0.7202. Furthermore, Salem showed that

-1 n
=Y ol = 0,
n k=0

so that «,, converges to zero on the average and there is the possibility that o, — 0. This is the problem posed by Raphaél
Salem [27]: do the Fourier coefficients of the Minkowski question mark function converge to 0? This is still an open problem.
Giedrius Alkauskas [1,2] already investigated this extensively by both numerical and analytical methods.

Our interest in this paper is in the orthonormal polynomials for the Minkowski question mark function:

1
/ Pa(X)pm(x) dq(X) = Sm.n,
0
where p, (x) = y»x" + - - - and y;, > 0, with recurrence relation

Xpn(X) = Apy1Pnt1(X) + bapp(X) + anpp-1(x), n =0, (2)
with pp = 1and p_; = 0, and in particular we are interested in the asymptotic behavior of the recurrence coefficients
(an)n>1 and (bp)n>o. Rakhmanov’s theorem [25,26] tells us that for an absolutely continuous measure p on [0, 1] for which
u' > 0 almost everywhere on [0, 1], one has a, — 1/4and b, — 1/2 asn — oo. In our case ¢’ = 0 almost everywhere,
so one cannot use Rakhmanov’s theorem to deduce the asymptotic behavior of the recurrence coefficients. However, it is
known (see, e.g., [21,32,29]) that there exist discrete measures and continuous singular measures on [0, 1] for which the
recurrence coefficients have the behavior b, — 1/2 and a, — 1/4 as n — 00, so that they are in the Nevai class M(z, I

Definition 1. The Nevai class M (b, a) consists of all positive measures on the real line for which the orthogonal polynomials
have recurrence coefficients satisfying
lim a, = a, lim b, = b.
n—oo n—-oo
It is well known that measures u € M(b, a) have essential spectrum [b — 2a, b + 2d], i.e., the support of u is [b — 2a,

b + 2a] U E, where E is at most countable and the accumulation points can only be at b + 2a (Blumenthal’s theorem, see,
e.g., [24, Thm. 7 on p. 23], [31, Section 5]).
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