Generalized anti-Gauss quadrature rules ${ }^{\star}$

Miroslav S. Pranić ${ }^{\mathrm{a}}$, Lothar Reichel ${ }^{\mathrm{b}, *}$
${ }^{\text {a Department of Mathematics and Informatics, University of Banja Luka, Faculty of Science, M. Stojanovića 2, } 51000 \text { Banja Luka, Bosnia }}$ and Herzegovina
${ }^{\text {b }}$ Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

ARTICLE INFO

Article history:

Received 11 August 2014
Received in revised form 11 November
2014

In memory of Pablo González Vera

MSC:

primary 65D30
65D32
65 F 15
secondary 41A55
Keywords:
Gauss quadrature
Anti-Gauss quadrature
Error estimate

Abstract

Gauss quadrature is a popular approach to approximate the value of a desired integral determined by a measure with support on the real axis. Laurie proposed an $(n+1)$-point quadrature rule that gives an error of the same magnitude and of opposite sign as the associated n-point Gauss quadrature rule for all polynomials of degree up to $2 n+1$. This rule is referred to as an anti-Gauss rule. It is useful for the estimation of the error in the approximation of the desired integral furnished by the n-point Gauss rule. This paper describes a modification of the $(n+1)$-point anti-Gauss rule, that has $n+k$ nodes and gives an error of the same magnitude and of opposite sign as the associated n-point Gauss quadrature rule for all polynomials of degree up to $2 n+2 k-1$ for some $k>1$. We refer to this rule as a generalized anti-Gauss rule. An application to error estimation of matrix functionals is presented.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let $d \mu$ be a nonnegative measure with infinitely many points of support such that the integral

$$
\begin{equation*}
\ell f:=\int_{a}^{b} f(x) d \mu(x), \quad-\infty \leq a<b \leq \infty \tag{1.1}
\end{equation*}
$$

is defined for all polynomials f. We assume that all moments

$$
\mu_{j}:=\int_{a}^{b} x^{j} d \mu(x), \quad j=0,1,2, \ldots
$$

exist and that the measure is normalized so that $\mu_{0}=1$. Introduce the inner product

$$
\begin{equation*}
(f, g):=\ell(f g) \tag{1.2}
\end{equation*}
$$

for polynomials f and g, and let $\left\{p_{j}\right\}_{j=0,1,2, \ldots}$ denote the sequence of monic orthogonal polynomials with respect to this inner product, i.e.,

$$
\left(p_{j}, p_{k}\right) \begin{cases}>0, & j=k \\ =0, & j \neq k\end{cases}
$$

where p_{j} is of degree j with leading coefficient one.

[^0]Let the function f be continuous on the convex hull of the support of the measure $d \mu$. The n-point Gauss quadrature rule associated with $d \mu$ is of the form

$$
\begin{equation*}
g_{n} f:=\sum_{i=1}^{n} f\left(x_{i}\right) w_{i} \tag{1.3}
\end{equation*}
$$

and is characterized by the property that

$$
\begin{equation*}
\ell f=g_{n} f \quad \forall f \in \mathbb{P}_{2 n-1}, \tag{1.4}
\end{equation*}
$$

where $\mathbb{P}_{2 n-1}$ denotes the set of all polynomials of degree at most $2 n-1$.
The orthogonal polynomials p_{j} satisfy a three-term recursion relation

$$
\begin{align*}
& p_{1}(x)=\left(x-a_{0}\right) p_{0}(x), \quad p_{0}(x)=1 \\
& p_{i+1}(x)=\left(x-a_{i}\right) p_{i}(x)-b_{i} p_{i-1}(x), \quad i=1,2, \ldots, \tag{1.5}
\end{align*}
$$

with $b_{i}>0$. The recursion relations for $p_{0}, p_{1}, \ldots, p_{n}$ can be expressed as

$$
x\left[\begin{array}{c}
p_{0}(x) \\
p_{1}(x) \\
\vdots \\
p_{n-1}(x)
\end{array}\right]=J_{n}\left[\begin{array}{c}
p_{0}(x) \\
p_{1}(x) \\
\vdots \\
p_{n-1}(x)
\end{array}\right]+\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
p_{n}(x)
\end{array}\right],
$$

where

$$
J_{n}=\left[\begin{array}{ccccc}
a_{0} & 1 & & & 0 \tag{1.6}\\
b_{1} & a_{1} & 1 & & \\
& & & \ddots & \\
& & \ddots & \ddots & 1 \\
0 & & & b_{n-1} & a_{n-1}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

We note that the matrix J_{n} can be symmetrized by a real diagonal similarity transformation. Denote the symmetrized tridiagonal matrix by T_{n}. It is well known that the eigenvalues and the squares of the first components of the normalized eigenvectors of T_{n} are the nodes and weights of the Gauss rule (1.3). They can be computed efficiently with the Golub-Welsch algorithm (see, e.g., [1-3]) or by a method described by Laurie [4].

This paper is concerned with the following $(n+k)$-point quadrature rules for $k \geq 2$. They generalize the ($n+1$)-point anti-Gauss rule introduced by Laurie [5], which is obtained when $k=1$.

Definition 1.1. The generalized anti-Gauss quadrature rule

$$
\begin{equation*}
\widetilde{\mathscr{g}}_{n+k}^{(k)} f:=\sum_{i=1}^{n+k} f\left(\widetilde{x}_{i}^{(k)}\right) \widetilde{w}_{i}^{(k)} \tag{1.7}
\end{equation*}
$$

is an $(n+k)$-point quadrature rule such that

$$
\begin{equation*}
\left(\ell-\tilde{g}_{n+k}^{(k)}\right) f=-\left(\ell-g_{n}\right) f \quad \forall f \in \mathbb{P}_{2 n+2 k-1} . \tag{1.8}
\end{equation*}
$$

It follows from (1.4) that

$$
\begin{equation*}
\widetilde{\mathscr{g}}_{n+k}^{(k)} f=\ell f \quad \forall f \in \mathbb{P}_{2 n-1} . \tag{1.9}
\end{equation*}
$$

For notational simplicity, we assume that the nodes are ordered according to

$$
\widetilde{x}_{1}^{(k)}<\widetilde{x}_{2}^{(k)}<\cdots<\widetilde{x}_{n+k}^{(k)}
$$

We can express (1.8) as

$$
\begin{equation*}
\tilde{\mathscr{g}}_{n+k}^{(k)} f=\left(2 \ell-g_{n}\right) f \quad \forall f \in \mathbb{P}_{2 n+2 k-1}, \tag{1.10}
\end{equation*}
$$

which shows that when the functional $\widetilde{\mathscr{G}}_{n+k}^{(k)}$ exists, we may consider it an $(n+k)$-point Gauss quadrature rule associated with the functional $2 \ell-g_{n}$. The latter functional is said to be quasi-definite if every leading $k \times k$ principal submatrix (for $k=1,2, \ldots$) of the infinite Hankel matrix

$$
H=\left[\begin{array}{ccccc}
\widetilde{\mu}_{0} & \widetilde{\mu}_{1} & \widetilde{\mu}_{2} & \widetilde{\mu}_{3} & \cdots \\
\widetilde{\mu}_{1} & \widetilde{\mu}_{2} & \widetilde{\mu}_{3} & & \\
\widetilde{\mu}_{2} & \widetilde{\mu}_{3} & & & \\
\widetilde{\mu}_{3} & & & & \\
\vdots & & & & \ddots
\end{array}\right]
$$

https://daneshyari.com/en/article/4638511

Download Persian Version:

https://daneshyari.com/article/4638511

Daneshyari.com

[^0]: 근 Version November 11, 2014.

 * Corresponding author.

 E-mail addresses: pranic77m@yahoo.com (M.S. Pranić), reichel@math.kent.edu (L. Reichel).

