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a b s t r a c t

In this paper we classify the global phase portraits in the Poincaré disc of all quartic poly-
nomial differential systems with a uniform isochronous center at the origin such that their
nonlinear part is not homogeneous.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and statement of the main results

Christian Huygens is credited with being one of the first scholars to study isochronous systems in the XVII century, even
before the development of the differential calculus. Huygens investigated the cycloidal pendulum, which has isochronous
oscillations in opposition to the monotonicity of the period of the usual pendulum. It is probably the first example of a
nonlinear isochrone. For more details see [1].

Isochronicity appears in awide variety of Physics phenomena and it is also closely related to the uniqueness and existence
of solutions for some boundary value, perturbation, or bifurcation problems. Moreover it is important in stability theory,
since a periodic solution in the region surrounding the center type singular point is Liapunov stable if and only if the
neighboring periodic solutions have the same period. Formore details on these topics see [2]. In the last decades the study of
isochronous systems has been increased due to the proliferation of powerful methods of computerized research, and special
attention has been dedicated to polynomial differential systems, see [3–6] and the bibliography therein.

In this paper we classify the global phase portraits of all quartic polynomial differential systems with a uniform
isochronous center at the origin such that their nonlinear part is not homogeneous.

Let p ∈ R2 be a center of a differential polynomial system in R2, without loss of generality we can assume that p is the
origin of coordinates. We say that p is an isochronous center if it is a center having a neighborhood such that all the peri-
odic orbits in this neighborhood have the same period. We say that p is a uniform isochronous center if the system, in polar
coordinates x = r cos θ, y = r sin θ , takes the form ṙ = G(θ, r), θ̇ = k, k ∈ R \ {0}, for more details see Conti [5].

Proposition 1. Assume that a planar differential polynomial system ẋ = P(x, y), ẏ = Q (x, y) of degree n has a center at the
origin of coordinates. Then, this center is uniform isochronous if and only if by doing a linear change of variables and a rescaling
of time it can be written into the form

ẋ = −y + x f (x, y), ẏ = x + y f (x, y), (1)

where f (x, y) is a polynomial in x and y of degree n − 1, and f (0, 0) = 0.
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Since we cannot find a proof of the well known Proposition 1 in the literature we have provided a proof in our paper at
the beginning of Section 3.

Algaba et al. [7] in 1999, and Chavarriga et al. [8] in 2001, independently provided the following characterization of
quartic polynomial systems with an isolated uniform isochronous center at the origin.

Theorem 2. Consider f (x, y) =
3

i=1 fi(x, y)where fi(x, y) for i = 1, 2, 3 are homogeneous polynomials of degree i, f 21 +f 22 ≠ 0
and f3 ≠ 0 such that (1) be a quartic polynomial differential system. Then the only case of local analytic integrability in an open
neighborhood of the origin of system (1) is given, modulo a rotation, by the time-reversible system.

ẋ = −y + x(A1x + B2xy + C1x3 + C3xy2),

ẏ = x + y(A1x + B2xy + C1x3 + C3xy2),
(2)

where A1, B2, C1, C3 ∈ R.

By the following classical result due to Poincaré [9] and Liapunov [10] Theorem 2 characterizes the quartic uniform
isochronous centers, except the ones for which the polynomial f (x, y) is a homogeneous polynomial of degree 3.

Theorem 3. An analytic differential system ẋ = −y+F1(x, y), ẏ = x+F2(x, y), with F1(x, y) and F2(x, y) real analytic functions
without constant and linear terms defined in a neighborhood of the origin, has a center at the origin if and only if there exists a
local analytic first integral of the form H = x2 + y2 + G(x, y) defined in a neighborhood of the origin, where G starts with terms
of order higher than two.

Algaba et al. [7] provided the phase portraits of systems (2) in the particular case C1 = 0. In such case systems (2) have
a polynomial commutator, allowing to get the bifurcation diagram of the systems. In Theorem 4, we provide all the global
phase portraits of systems (2).

Theorem 4. Consider a quartic polynomial differential system X : R2
→ R2 and assume that X has a uniform isochronous center

at the origin such that their nonlinear part is not homogeneous. Then the global phase portrait of X is topologically equivalent to
one of the 14 phase portraits of Fig. 1.

More precisely, since X can always be written as system (2), the global phase portrait of X is topologically equivalent to the
phase portrait

(a) of Fig. 1 if either C1C3 > 0, or C3 = 0, B2 < 0;
(b) of Fig. 1 if C1 = 0, C3 ≠ 0 and if either r1, r2, r3 > 0, or r1, r2, r3 < 0;
(c) of Fig. 1 if C1 = 0, C3 ≠ 0 and if either r1 < 0, r2, r3 > 0, or r1, r2 < 0, r3 > 0;
(d) of Fig. 1 if C1 = 0, C3 ≠ 0 and if either r1r2 > 0, r3 = r2, or r2 = r1, r1r3 > 0;
(e) of Fig. 1 if C1 = 0, C3 ≠ 0 and if either r1 < 0, r2 > 0, r3 = r2, or r2 = r1, r1 < 0, r3 > 0;
(f) of Fig. 1 if C1 = 0, C3 ≠ 0 and if either r3 = r2 = r1, ∀r1, r2, r3 ∈ R∗, or r1 ≠ 0 and r2,3 = a ± bi, ∀r1, b ∈ R∗, a ∈ R;
(g) of Fig. 1 if C3 = 0, C1 ≠ 0, B2 > 0, C1 ≠ −A1B2;
(h) of Fig. 1 if either C3 = 0, C1 ≠ 0, B2 > 0, C1 = −A1B2, or B2 = C3 = 0;
(i) or (j) or (k) of Fig. 1 if C1C3 < 0, B2 = 0;
(j) or (m) or (n) of Fig. 1 if C1C3 < 0, B2 ≠ 0;

where in the cases with C1 = 0, we have that r1, r2, r3 are the roots of the polynomial −C3 − B2x − A1x2 − x3 and we assume
that r1 ≤ r2 ≤ r3 when these roots are real.

Our results have been checked with the software P4, see for more details on this software the Chapters 9 and 10 of [11].
The rest of the paper is organized as follows. In Section 2 we present some results and technical propositions used in our

study. In Section 3 we prove Theorem 4.

2. Preliminary results

In this section we present some results necessary to our study.

Poincaré compactification

Let X be a planar vector field of degree n. The Poincaré compactified vector field p(X) corresponding to X is an analytic
vector field induced on S2 as follows (see, for instance [12], or Chapter 5 of [11]). Let S2

= {y = (y1, y2, y3) ∈ R3
:

y21 + y22 + y23 = 1} (the Poincaré sphere) and TyS2 be the tangent space to S2 at point y. Consider the central projection f :

T(0,0,1)S2
→ S2. Thismapdefines two copies ofX, one in the northern hemisphere and the other in the southern hemisphere.

Denote byX′ the vector fieldDf ◦X defined on S2 except on its equator S1
= {y ∈ S2

: y3 = 0}. Clearly S1 is identified to the
infinity of R2. In order to extend X′ to a vector field on S2 (including S1) it is necessary that X satisfies suitable conditions.
In the case that X is a planar vector field of degree n then p(X) is the only analytic extension of yn−1

3 X′ to S2. On S2
\S1
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