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a b s t r a c t

A goal-oriented a posteriori error estimation of an output functional for elliptic problems
is presented. Continuous finite element approximations are used in quadrilateral and
triangular meshes. The algorithm is similar to the classical dual-weighted error estimation,
however the dual weight contains solutions of the proposed patch problems. The patch
problems are introduced to apply Clément and Scott–Zhang type interpolation operators
to estimate point values with the finite element polynomials. The algorithm is shown to be
reliable, efficient and convergent.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we develop a goal-oriented a posteriori error estimation with respect to certain target functionals. A goal
oriented adaptive finite element method has been an active research of many scientists since last three decades and goes
back to earlier work of Erikson and Johnson, Becker and Rannacher, with co-workers, see [1–5]. The error in the target
functional, or the so-called quantity of interest is written as a product of the residual of the underlying primal problem
and the corresponding adjoint or dual solution. Although dual-weighted a posteriori error estimates are applied successfully
for various problems and impressive performance was obtained in terms of efficiency and computability, see e.g. [6–8], the
convergence of the adaptive algorithmwasnot knownuntil thework of [9,10]. In [9] the dual-weighted term is kept element-
wise, and by making rather stronger regularity assumptions for the primal and dual solutions they proved the convergence
and optimality of the adaptive algorithm. Whereas in [10] product of the energy norms of primal and dual problems is kept
globally. The estimator marks cells with respect to the energy norms of primal and dual problems separately, then the set
of marked cells with the smallest cardinality is refined. The convergence and optimality of the algorithm are established
for the scaled Poisson equation, however the generalization for more complex differential equations is not clear. In [11] the
product of energy norms of the primal and dual problems is separated by Hölder’s inequality, then the union of the sets
with the largest error with respect to both primal and dual error indicators is chosen for the refinement. The approximated
error is overestimated in this case, nevertheless the convergence of the underlying adaptive algorithm is obtained using the
contraction framework by [12].

The presented method in this paper is closely related to the classical dual-weighted algorithm, i.e. the error on the
quantity of interest is estimated by the sum of the cell errors, which are the product of the primal and dual contributions.
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Moreover, finite element spaces for the primal and dual solutions can be the same. The main idea consists of using Clément
or Scott–Zhang type interpolation operator to estimate the continuous dual solution by a local average of the underlying
finite element space. First, we prove reliability and efficiency of the new algorithm. We then prove the convergence and
show the optimality of the algorithm numerically. The proof of optimality of the algorithm is under investigations and will
be reported in due time.

To avoid confusion in notations between triangular and quadrilateral elements, we develop the main framework and
proofs for quadrilateral meshes. Nevertheless, the below analysis also apply to triangular meshes.

The paper is organized as follows. In Section 2we give the standard finite element notations and the problem formulation.
Section 3 is themain contribution of this paper.We introduce an adaptive algorithmbased on goal-oriented a posteriori error
estimation, we prove its reliability, efficiency. Then in Section 3 we discuss convergence of the proposed adaptive algorithm
for h and hp refinements. Number of numerical illustrations is given in Section 5 to support the theory presented in this
paper.

2. Preliminaries

In this section, we want to fix some notations and introduce the basic assumptions which we require throughout this
work. Further, the elliptic model problem is presented and we introduce the basic idea of goal-oriented adaptivity.

2.1. Notations and basic assumptions

Let Ω ⊂ R2 denote some open and bounded domain. We denote the Lebesgue space of square-integrable functions in
Ω by L2(Ω) and its dual by L2(Ω)′. The Sobolev space H1(Ω) is defined by

H1(Ω) :=

u ∈ L2(Ω) : ∇u ∈ L2(Ω)2


.

The spaceH1
0 (Ω) contains all functions fromH1(Ω)with vanishing trace on the boundary ∂Ω ofΩ . Let T be a triangulation

of Ω consisting of quadrilaterals with possibly one-irregular hanging nodes. We assume that, for every K ∈ T , there exists
a reference mapping F : K → K . Let h := (hK )K∈T , hK := diam(K) denote the mesh size vector and p := (pK )K∈T , pK ∈ N
be the polynomial degree vector associated with triangulation T . Further, we assume that T is


γh, γp


-regular [13–15]:

Definition 1 ((γh, γp)-Regularity). T is called

γh, γp


-regular, if and only if there exist constants γh, γp > 0 such that

hK1

γh
≤ hK2 ≤ γhhK1

and
pK1
γp

≤ pK2 ≤ γppK1

for all K1, K2 ∈ T with K1 ∩ K2 ≠ ∅.

The finite-dimensional approximation space V p(T ) is defined by

V p(T ) :=

u ∈ H1

0 (Ω) : u|K ◦ FK ∈ QpK

K for all K ∈ T

,

where Qq
K denotes the tensor-product polynomial space of degree q ∈ N. An interior edge is the (nontrivial) intersection

e = K1 ∩ K2 of two elements K1, K2 ∈ T and we denote the collection of all interior edges by E(T ).
Now, let K ∈ T be arbitrary. Then, we denote the set of all interior edges of cell K by E(T ; K). For e ∈ E(T ; K), we set

he := diam(e) and pe := max

pK , pK∗


, where K∗ ∈ T with K ∩ K∗ = e. Further, we define the patch ωK around cell K by

ωK :=


L∈T

{L : K and L share a common edge}.

A slightly larger patch ωK ,1 is defined by

ωK ,1 :=


L∈T

K∩L≠∅

L

and we can extend this definition iteratively by

ωK ,i+1 :=


L∈T

ωK ,i∩L≠∅

L (1)

for all i ∈ N.
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