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a b s t r a c t

Classical iterative methods for tomographic reconstruction include the class of Algebraic
Reconstruction Techniques (ART). Convergence of these stationary linear iterativemethods
is however notably slow. In this paper we propose the use of Krylov solvers for
tomographic linear inversion problems. These advanced iterative methods feature fast
convergence at the expense of a higher computational cost per iteration, causing them to
be generally uncompetitive without the inclusion of a suitable preconditioner. Combining
elements from standard multigrid (MG) solvers and the theory of wavelets, a novel
wavelet-based multi-level (WMG) preconditioner is introduced, which is shown to
significantly speed-up Krylov convergence. The performance of the WMG-preconditioned
Krylov method is analyzed through a spectral analysis, and the approach is compared
to existing methods like the classical Simultaneous Iterative Reconstruction Technique
(SIRT) and unpreconditioned Krylov methods on a 2D tomographic benchmark problem.
Numerical experiments are promising, showing the method to be competitive with the
classical Algebraic Reconstruction Techniques in terms of convergence speed and overall
performance (CPU time) as well as precision of the reconstruction.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Computed Tomography (CT) is a powerful imaging technique that allows non-destructive visualization of the interior of
physical objects. Besides its common use in medical applications [1], tomography is also widely applicable in fields such as
biomedical research, materials science, and metrology. In all applications, a certain imaging source (e.g. an X-ray source)
and an imaging detector (e.g. X-ray detector) are used to acquire two-dimensional projection images of the object from
different directions. A three-dimensional virtual reconstruction can then be computed using one of themany reconstruction
techniques that can be found in the literature. In practice, the most commonly used analytical methods for CT are Filtered
Backprojection (FBP) and its cone-beamvariant Feldkamp–Davis–Kress (FDK). Thesemethodsmake use of various analytical
properties of the projection geometries to compute the reconstructed object at a low computational cost. Amajor drawback
of analytical methods is their inflexibility to different experimental setups and their inability to include reconstruction
constraints which can be used to exploit possible prior information about the object.
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Iterative Algebraic Reconstruction Techniques (ART) form an interesting alternative to the aforementioned analytical
methods. Here, the reconstruction problem is described as the solving of a system of linear equations. The Simultaneous
Iterative Reconstruction Technique (SIRT) is a straightforward method that has been extensively studied in the literature,
see [2] and the references therein. Another general class of algebraic solution methods are the Krylov solvers such as
CGLS, GMRES, and BiCGStab, an overview of which can be found in [3]. Alternatively, one can resort to more powerful
techniques that apply additional constraints to the reconstruction, which can lead to improved accuracy, especially when
fewer projection images are available (i.e. scans with a lower radiation dose). Total variation minimization approaches such
as FISTA [4], for example, assume that the variation between neighboring pixels is low inside a homogeneous object. Discrete
tomography approaches such as DART [5] improve the reconstruction quality by limiting the number of gray level values
that can be present in the reconstructed image.

While iterativemethods for tomographyhave becomewidely accepted in the scientific community, practical applications
have not yet adopted these techniques [6], mostly due to the variable computational cost and storage requirements of
the iterative process (contrary to the fixed costs of analytical methods based on FFT-type algorithms). The development of
efficient new iterative solvers is therefore crucial. This efficiency can be accomplished in two ways. Firstly, the computation
time of each iteration can be reduced by optimally exploiting parallelism of the projection and backprojection operators
with the use of modern hardware accelerated computer architectures such as NVIDIA GPU’s [7] or the Intel Xeon Phi [8].
Secondly, a solver with a fast convergence rate, requiring only a limited number of iterations should be used. Additionally,
the convergence rate of the ideal solver should not depend on the problem size.

In this work, an approach that fits into the second category will be introduced for non-constrained iterative reconstruc-
tion. By analyzing the spectral properties of the standard SIRT method, it will be shown that the convergence of classical
algebraic reconstruction techniques (stationary iterative schemes) is notably slow. As it appears, the alleged smoothing
property does not hold in the case of tomographic reconstruction problems. Krylov methods prove to be more efficient, yet
are generallymore expensive in terms ofmemory and computation cost. Therefore,when using Krylovmethods, it ismanda-
tory to define an efficient preconditioner, which allows faster convergence. This approach is very common in a wide range
of PDE-type problems, yet is still fairly new for tomographic reconstruction. Related work in the setting of tomographic
reconstruction includes the research on multilevel image reconstruction by McCormick et al. [9,10], and more recently the
work done on multigrid methods for tomographic reconstruction by Webb et al. [11] and Rüde et al. [12].

Originally introduced as a theoretical tool by Fedorenko in 1964 [13] and later adopted as a solutionmethod by Brandt in
1977 [14], multigrid (MG) solvers are commonly used as efficient and low-cost Krylov preconditioners for high-dimensional
problems in the PDE literature, see e.g. [15,16]. One of the key concepts of the multigrid scheme is the representation of
the original fine grid reconstruction problem on a coarser scale resolution, where the problem is computationally cheaper
to solve. However, we show that the standard multigrid approach [17–20] does not act as an efficient preconditioner for
algebraic tomographic systems. Indeed, the ineffectiveness of the smoother in eliminating the oscillatory modes causes the
key complementary action of smoother and coarse grid correction to fail, resulting in an inefficient multigrid scheme for
algebraic tomographic reconstruction problems.

In this work a new wavelet-based multigrid (WMG) preconditioner is introduced, which is more suited for tomographic
reconstruction. The proposed method combines elements from standard multigrid with the theory of wavelets, and shows
some similarities to the work on wavelet-based multiresolution tomographic reconstruction in [21,22]. Additionally,
the main advantage of the proposed method, i.e. projection of the large fine-scale system onto smaller, easy-to-solve
subproblems, resembles key features of the Hierarchical Basis Multigrid Method (HBMM) [23,24]. It is shown through an
eigenvalue analysis that WMG-preconditioning significantly increases Krylov convergence speed, which is confirmed by
various numerical experiments. Additionally, we show that the WMG-preconditioned Krylov solver allows for an accuracy
which is generally unobtainable by classical SIRT reconstruction. The numerical results presented in this work show
promise, validating the proposed WMG scheme as an efficient Krylov preconditioning technique for algebraic tomographic
reconstruction.

The paper is structured as follows. In Section 2 the classical SIRT and MG-Krylov solvers for iterative tomographic
reconstruction are reviewed and analyzed. Section 3 introduces a novel preconditioning approach to account for the defects
of the MG preconditioner, which greatly improves convergence speed of the BiCGStab Krylov solver. In Section 4, a series
of experimental simulations is presented to validate our contribution. Ultimately, Section 5 concludes this work with an
overview of the main results in this paper and a discussion on possible future research options.

2. Notation and key concepts of tomographic reconstruction

2.1. Algebraic tomographic reconstruction

Consider a data vector b ∈ RM , with M = m × n, where m is the number of projection angles and n is the number of
beams. We assume that the number of pixels in every spatial dimension equals n, such that the data is reconstructed on a
2D n× n grid. We denote the total number of pixels in the image by N = n× n. Algebraic reconstruction methods consider
tomographic reconstruction as the problem of solving the linear system of equations

Wx = b, (1)
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