
Journal of Computational and Applied Mathematics 283 (2015) 58–70

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Mixed finite element methods for two-body contact
problems
Andreas Schröder a,b,∗, Heiko Kleemann c, Heribert Blum c

a Department of Mathematics, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
b Department of Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
c Faculty of Mathematics, Technische Universität Dortmund, 44221 Dortmund, Germany

a r t i c l e i n f o

Article history:
Received 20 June 2011

MSC:
65N15
65N30

Keywords:
Higher-order FEM
Contact problems
Mixed methods

a b s t r a c t

This paper presents mixed finite element methods of higher-order for two-body contact
problems of linear elasticity. The discretization is based on amixed variational formulation
proposed by Haslinger et al. which is extended to higher-order finite elements. The main
focus is on the convergence of the scheme and on a priori estimates for the h- and the
p-method. For this purpose, a discrete inf–sup condition is proven which guarantees the
stability of the mixed method. Numerical results confirm the theoretical findings.
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1. Introduction

The aim of this paper is to derive mixed finite element methods of higher-order for two-body contact problems in linear
elasticity. The discretization approach is based on mixed finite elements for contact problems introduced by Haslinger
et al. in [1–3]. This approach was originally developed for low-order finite elements. In this paper, we extend it to higher-
order discretizations and to two-body contact problems. The approach relies on a saddle point formulation. The introduced
Lagrange multiplier is defined on the surface of one of the bodies in contact and enforces the geometrical contact condition
via a sign condition.

To guarantee the uniqueness of the solution of the mixed scheme and to show its convergence one has to provide a
uniform discrete inf–sup condition which balances the discretization spaces of the primal variable and of the Lagrange
multiplier. It is an essential assumption to show the convergence of the mixed scheme without regularity assumptions, to
derive a priori estimates and to determine convergence rates based on these estimates.

In this work, the higher-order discretization of the primal variable is given via a conforming ansatz using tensor product
polynomials. The discretization space of the discrete Lagrange multiplier is also based on such tensor products. To include
the sign condition, we enforce the discrete Lagrange multiplier to be positive only in Gauss quadrature points leading to a
non-conforming discretization. This approachwas already suggested in [4] for frictional contact problems.We show the con-
vergence of the mixed scheme and discuss some arguments as proposed by Haslinger et al. and Lhalouani et al., cf. [1,2,5–7]
to determine convergence rates for low-order discretizations of the Lagrange multiplier. The main result is the derivation
of convergence rates with respect to higher-order discretizations in both variables. The essential ingredient is to intensively
utilize the discretization of the Lagrange multiplier via its definition in Gauss points. This enables to apply higher-order
interpolations as introduced in [8] as well as quadrature rules for the exact integration of polynomials.
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This work also deals with the verification of a uniform discrete inf–sup condition. For low-order finite elements and one-
body contact problems, the discrete inf–sup condition is proven in [1,2]. An essential assumption of the proof is that the
discretization of the Lagrange multiplier is defined on boundary meshes with a different mesh size than that of the primal
variable. We show that in the higher-order approach, this assumption can, in principle, be avoided using different polyno-
mial degrees. In the proof of the discrete inf–sup condition, we use approximation results of the p-method of finite elements
and some inverse estimates for higher-order polynomials, cf. [9,10]. In particular, we adapt the proof of the discrete inf–sup
condition for frictional one-body contact problems as described in [11].

Higher-order discretization schemes for contact problems are rarely studied in literature, especially formixed variational
formulations. We refer the reader to [12,13] for finite element discretizations based on primal, non-mixed formulations,
to [4] formixedmethods using amortar approach and to [14] for boundary elementmethods.Mixedmethodswith quadratic
finite elements are described in [15–17].

The paper is organized as follows: In Section 2, the two-body contact problem and its mixed variational formulation are
introduced. The convergence of the mixed scheme and general a priori estimates are discussed in Section 3. In Section 4
the discretization of higher-order is presented, its convergence is proven and convergence rates are determined. A uniform
discrete inf–sup condition is proven in Section 5. Finally, numerical results confirming the theoretical findings are discussed
in Section 6.

2. Two-body contact problem and its mixed variational formulation

We consider the deformation of two bodies being in contact. They are represented by the domains Ω l
⊂ Rk, k ∈ {2, 3},

l ∈ {1, 2}, with sufficiently smooth boundaries Γ l
:= ∂Ω l and are clamped at some boundary parts which are represented

by the closed sets Γ l
D ⊂ Γ l with positivemeasure. The boundary parts of the bodies where the bodies possibly get in contact

are described by open sets Γ l
C where we assume Γ

l
C ( Γ l

\ Γ l
D and Γ l

N := Γ l
\ (Γ l

D ∪ Γ
l
C ). Volume and surface forces act on

the bodies. They are described by functions f l ∈ L2(Ω l
; Rk) and ql ∈ L2(Γ l

N; Rk). The resulting deformation is described by
displacement fields vl

∈ H1(Ω l
; Rk) with the linearized strain tensor ε(v) :=

1
2 (∇v + (∇v))⊤. The stress tensor describ-

ing the linear-elastic material law is defined as σ l(v)ij := C l
ijklε(v)kl, where C l

ijkℓ ∈ L∞(Ω) with C l
ijkℓ = C l

jiℓk = C l
kℓij and

C l
ijkℓτijτkℓ ≥ κτ 2

ij for all τ ∈ L2(Ω; Rk×k) with τij = τji and a constant κ > 0. We set H1
D(Ω
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; Rk) | γ l

|Γ l
D
(vi)

= 0, i = 1, . . . , k} for the trace operator γ l
∈ L(H1(Ω l), L2(Γ l)) and define (σ l

n(v
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ij(v
l)nl

j, v
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in
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ij(v

l)nl
in
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j,σ
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nt(v
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n(v

l)−σ l
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l)nwith outer normal nl ofΓ l. For a bijective, sufficiently smoothmappingΦ : Γ 1
C → Γ 2

C

and x ∈ Γ 1
C , we define

ñ(x) :=


Φ(x) − x
|Φ(x) − x|

, x ≠ Φ(x),

n1(x) = −n2(x), x = Φ(x)

and the gap function g(x) := |x − Φ(x)|. Furthermore, we set [v1, v2
]ñ(x) := v1

i (x)ñi − v2
i (Φ(x))iñi for functions v1 and v2

on Γ 1
C and Γ 2

C , respectively. The two-body contact problem is thus to find displacement fields u1 and u2 such that

−div σ l(ul) = f l in Ω l,

ul
= 0 on Γ l

D,

σ l
n(u

l) = ql on Γ l
N ,

σ l
nt(u

l) = 0 on Γ l
C ,

[u1, u2
]ñ ≤ g, σ 1

ññ(u
1) ≤ 0, σ 1

ññ(u
1)([u1, u2

]ñ − g) = 0 on Γ 1
C .

In this paper, the following notational conventions are used. The space H−1/2(Γ 1
C ) denotes the topological dual space of

H1/2(Γ 1
C )with norms ∥·∥

−1/2,Γ 1
C
and ∥·∥1/2,Γ 1

C
, respectively. Let (·, ·)0,ω and (·, ·)0,Γ ′ be the usual L2-scalar products onω ⊂
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⊂ Γ 1

C , respectively. For v ∈ H1
D(Ω

l) and w ∈ L2(Γ ′), we define ∥v∥
2
0,Ω l := (vi, vi)0,Ω l and ∥w∥

2
0,Γ ′ := (w, w)0,Γ ′ .

Furthermore, the usual H1-norm on H1
D(Ω

l) is denoted by ∥ · ∥1,Ω l . We define γ l
N ∈ L(H1
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N , Rk)) as γ l

N(v)i :=

γ l
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N
(vi) and HD := H1

D(Ω
1) × H1
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2
1 :=


l=1,2 ∥vl

∥
2
1,Ω l for v ∈ HD. We set

γCñ ∈ L(HD,H1/2(Γ 1
C )) as γCñ(v) := [γ 1

C (v1), γ 2
C (v2)]ñ which is surjective due to the assumptions on Γ 1

C , cf. [18]. Finally,
we introduce some interpolation spaces H1+θ (Ω l) and H−1/2+θ (Γ 1

C ) for θ > 0 which are defined via H1+θ (Ω l) := [H1(Ω l),
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It is well-known that the solution of the two-body contact problem u ∈ HD is also a solution u ∈ K := {v ∈ HD |

γCñ(v) ≤ g} of the variational inequality
a(u, v − u) ≥ ℓ(v − u)

for all v ∈ K , where a(u, v) :=

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above is fulfilled if and only if u is a minimizer of the functional E(v) :=
1
2a(v, v) − ℓ(v) in K . Due to Cauchy’s and Korn’s
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