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a b s t r a c t

Webriefly introduce typical and important direct and iterativemethods for solving systems
of linear equations, concretely describe their fundamental characteristics in viewpoints of
both theory and applications, and clearly clarify the substantial differences among these
methods. In particular, the motivations of searching the solution of a linear system in a
Krylov subspace are described and the algorithmic realizations of the generalized minimal
residual (GMRES) method are shown, and several classes of state-of-the-art algebraic pre-
conditioners are briefly reviewed. All this is useful for correctly, deeply and completely
understanding the application scopes, theoretical properties and numerical behaviors of
these methods, and is also helpful in designing new methods for solving systems of linear
equations.
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1. Introduction

The system of linear equations

Ax = b, with A ∈ Rn×n nonsingular and x, b ∈ Rn, (1)

can be solved efficiently by either a direct or an iterative method [1–5]. Roughly speaking, the direct methods are based on
the lower-upper triangular and the orthogonal-triangular factorizations, or in brief, the LU (or the Gaussian elimination) and
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the QR factorizations [5], and the iterative methods are based on the matrix splittings [1,2,5–7] and the Krylov subspaces
[4,5,8,9]. These two classes of methods are principally different but computationally dependent. More specifically, an
iterative method can be used to refine an approximate solution computed by a direct method, and a direct method can be
employed to precondition an iterative method. In particular, in the Krylov subspace iteration methods the orthogonal basis
of the subspace is often computed through a stable variant of the QR factorization [10]. Therefore, a technical and skillful
combination of direct and iterative methods can produce fast, stable and accurate linear solvers for the linear system (1).

While numerical stability and computational complexity are main issues in theoretically analyzing the direct meth-
ods, and balanced scaling, proper pivoting and effective ordering are essential strategies in their practical implementations
[3,11], a challenge in theoretical study of the Krylov subspace iteration methods is convergence analysis of the iteration se-
quences, and amajor difficulty in practical usage of thesemethods is algorithmic construction of high-quality preconditioner
and algebraic analysis of the corresponding preconditioned matrix [8,9,12].

In this paper, we will briefly review several typical and important direct and iterative methods that are economical and
effective for solving the linear system (1). The motivations of searching the solution x∗ of the linear system (1) in a Krylov
subspace are described in detail, and the algorithmic realizations of GMRES [13] are shown deliberately. Also, we discuss
convergence properties of the Krylov subspace iterationmethods such as GMRESwhen thematrix A is symmetric andwhen
it is nonsymmetric but diagonalizable, and review several classes of effective preconditioners such as those based on incom-
plete LU (ILU), incomplete QR (IQR), sparse approximate inverses, matrix splitting iterations, and algebraic multilevel and
multigrid iteration techniques. All this could be useful for correctly, deeply and completely understanding the application
scopes, theoretical properties and numerical behaviors of these methods, and should be helpful in designing new methods
for solving systems of linear equations.

2. The direct methods

In the Gaussian elimination method, we successively operate the Gauss transforms one a time on the expanded matrix
[A | b], and finally obtain the target matrix [I | x∗], that is, [A | b] → [I | x∗] in symbolic, where I is the identity matrix.
This method can solve only one system a time, requiring approximately the storage n2

+ n (n2 for the coefficient matrix
A and n for the right-hand side b) and the operations 2

3n
3. The methodology of the LU factorization is a little bit different

from the Gaussian elimination, which first factorizes the coefficient matrix A into the product of a lower-triangular matrix
L and an upper-triangular matrix U , i.e., A = LU , and then computes the exact solution x∗ of the linear system (1) through
a forward elimination and a backward substitution. The LU factorization method can solve many linear systems having the
same coefficient matrix A but different right-hand sides b a time.

For the QR factorization method, we first factorize the coefficient matrix A into a product of an orthogonal matrix Q and
an upper-triangular matrix R, obtaining A = QR, and then compute the exact solution x∗ of the linear system (1) through a
backward substitution due to Rx = Q Tb. The QR factorization requires approximately the storage n2

+ n and the operations
2n3. Here and in the sequel, we use (·)T to indicate the transpose of either a vector or a matrix.

Besides the differences in storage and operationmentioned above, it has been proved that the LU factorization exists only
for strictly diagonal dominant matrices and symmetric positive definite matrices, but the QR factorization may exist for any
matrix even for a rectangular one. Hence, the QR factorization can be employed to solve the linear least-squares problems
via, e.g., the seminormal equation RTRx = ATb; see [14]. Moreover, if A ∈ Rn×n is sparse, then both L and U may be also
sparse, but Q and R could be dense. Hence, each of these two factorizations has its pros and cons.

As we have known, Givens rotation, Householder reflection and Gram–Schmidt orthogonalization are three classical
and typical tools for computing a QR factorization for a given matrix. Below we review the classical Gram–Schmidt
orthogonalization process and its stabilized modification, in which the latter is the elementary ingredient of the Krylov
subspace iteration methods.

Let

A = [a1, a2, . . . , an], Q = [q1, q2, . . . , qn]

and

R =


r11 r12 · · · r1n

r22
...

. . .
...
rnn

 ,

where ai and qi are the ith columns of the matrices A and Q , respectively. Then A = QR or

[a1, a2, . . . , an] = [q1, q2, . . . , qn]


r11 r12 · · · r1n

r22
...

. . .
...
rnn
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