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a b s t r a c t

Error estimates for the space semi-discrete approximation of solutions of the Wave equa-
tion in polygons G ⊂ R2 are presented. Based on corner asymptotics of the solution, it
is shown that for continuous, simplicial Lagrangian Finite Elements of polynomial degree
p ≥ 1with either suitably gradedmesh refinement or with bisection treemesh refinement
towards the corners of G, the maximal rate of convergence O(N−p/2) which is afforded by
the Lagrangian Finite Element approximations on quasiuniform meshes for smooth solu-
tions is restored. Dirichlet, Neumann and mixed boundary conditions are considered. Nu-
merical experiments which confirm the theoretical results are presented. Generalizations
to nonhomogeneous coefficients and elasticity and electromagnetics are indicated.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The regularity of elliptic equations in polygonal domains has been studied for several decades, starting with the work by
Kondrat’ev [1] and Maz’ya and Plamenevskiı̆ [2]. We refer to Maz’ya and Rossmann [3] for a recent account of these results,
also in polyhedral domains in R3 and a comprehensive list of references.

It is well-known that regularity results in scales of Sobolev spaces with weights allow to recover optimal convergence
rates for Finite Element Methods (FEM) with local mesh refinement in the vicinity of corners; we refer to Raugel [4] and
Babuška et al. [5,6], and Băcuţă et al. [7] for so-called graded meshes, and, more recently, to [8] and the references there for
simplicial meshes with bisection tree refinements produced by Adaptive Finite Element Methods (AFEMs).

For evolution problems, in particular for the linear, second order Wave equation, similar results do not seem to be
available. However, corner singularities are known to play a crucial role in the scattering and diffraction of waves. In recent
years, results on the regularity of the pure Dirichlet and Neumann problems of solutions of the Wave equation in polygonal
and in certain polyhedral domains have been proved by Plamenevskiı̆ et al. in [9–11] for the scalar, acoustic Wave equation,
and in [12,13] for a general class of second order, linear hyperbolic systems. Their results imply that at a fixed time t , u(·, t)
belongs to a class of function spaces Hp+1,2

δ which appeared already in the study of elliptic equations. Moreover, in these
papers explicit formulae for the asymptotics of u(x, t) in the vicinity of corners of the polygon G were obtained. Therefore,
in principle, approximation results for Hp+1,2

δ on several families of locally refined meshes as, for example, in [6], as well as
a mesh refinement algorithm presented in [8], may now be applied to the solution of the Wave equation. The main result
of the present paper is that the space semi-discrete (‘‘method of lines’’) type discretization of the Wave equation yields
optimal convergence rates for solutions with singular asymptotic behaviour in the vicinity of the corners, which are known
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to typically occur in solutions of the linear, second order Wave equation. We hasten to add that our approximation results
are also applicable to singularities which arise in propagation of elastic and electromagnetic waves in polygonal domains.

The outline of the present paper is as follows.We start with an introduction to the used notations, and the formulation of
the scalar Wave equation with Dirichlet and Neumann conditions in Section 2. Section 3 contains a review of the regularity
theory for the scalar Wave equation, starting from the definitions of weighted Sobolev spaces. In Section 4, we study the
FEM-approximation of singular functions, and recall two classes of meshes which yield optimal convergence rates in the
presence of corner singularities. These results are applied in Section 5 with the decomposition theorem to obtain optimal
convergence rates for the space semi-discrete Finite Element approximation of the Wave equation in polygonal domains.
Finally, in Section 6, we present results of numerical experiments, performed with a very small time-step to approximately
‘‘cancel’’ the influence of the time-stepping error.

2. Problem formulation

On an open, bounded polygonal domain G ⊆ R2 and for 0 < Tmax < ∞, with boundary ∂G = ΓD ∪ ΓN which consists
of a finite number of straight segments Γi which are partitioned into Dirichlet and Neumann segments, we consider the
initial–boundary value problem for the scalar Wave equation with Dirichlet or Neumann boundary conditions, i.e. we wish
to find solutions u(x, t), (x, t) ∈ Qfin := G × (0, Tmax) such that

utt −1u = f in Qfin,
u(·, 0) = u0 in G,
ut(·, 0) = v0 in G,
u(·, t) = 0 on ΓD × (0, Tmax),
∂u
∂n

= 0 on ΓN × (0, Tmax).

(1)

We denote byHs(G) the usual Sobolev spaces on G, and byH1
0 (G) the subspace ofH

1(G) built by functions with vanishing
trace. Moreover, given a Hilbert space H , we denote by Hs(0, Tmax;H) the Hs-Bochner space of functions from [0, Tmax] to H .
We introduce the space V defined as the completion of {v ∈ C∞(G) : v|ΓD ≡ 0} with respect to the H1-norm. We set

V =


H1

0 (G) if ΓN = ∅,

H1(G) if ΓD = ∅.

Wewill also denote by (·, ·) the L2(G) inner product, extended to the pair of spaces V × V ∗ with duality taken with respect
to the ‘‘pivot’’ space L2(G) by continuity. Applying integration by parts, the mixed initial–boundary value problem for the
scalar Wave equation with homogeneous Dirichlet or Neumann conditions can be written in the following variational form.

Find u ∈ H1(0, Tmax; V ), such that ∀t ∈ (0, Tmax) and ∀v ∈ V :

∂2t (u(·, t), v)+ (∇u(·, t),∇v) = (f (·, t), v) ,
(u(·, 0), v) = (u0, v),

∂t (u(·, 0), v) = (v0, v),

(2)

where u0 ∈ V , v0 ∈ L2(G) and where f ∈ L2(0, Tmax; L2(G)) are given.
We discretize (2) by the method of lines, using continuous Lagrangian FEM of uniform polynomial degree p ≥ 1

in the spatial domain G on a family of regular, simplicial triangulations of the domain G, followed by a non-specified
discretization method in time. This is well-known to yield optimal convergence rates w.r. to the mesh size for the semi-
discrete formulation, if u ∈ C2([0, Tmax]; V ∗). In convey domains, sufficient conditions for this to be satisfied are f ∈

H1(0, Tmax; L2(G)), u0, v0 ∈ V , and the following compatibility conditions:

∂ j

∂t j
u(x, 0) ∈ V , j = 0, 1, 2, 3, and

∂4

∂t4
u(x, 0) ∈ L2(G).

See, e.g., [14] for a detailed discussion of these compatibility conditions, where also necessary conditions for the regularity
u(·, t) ∈ Hp+1(G) for domains Gwith smooth boundary are derived.

In the case the domain G is a generic bounded polygon in R2, higher regularity of u(x, t) is only given in suitable scales
of weighted Sobolev spaces, [9–11]. Therefore, further conditions on the mesh refinement need to be imposed. In Section 4,
wewill present two types of gradedmesh refinements that approximate singular solutions with optimal convergence rates.
Ourmain result will be given in Theorem 5.5 and states that for the space semi-discrete Finite Element approximation of the
initial–boundary value problem of the scalar, second orderWave equation, themesh families used in Section 4 yield optimal
convergence rates. Hence, we consider the space semi-discrete case, and therefore our results are not restricted to specific
time-stepping schemes. Numerical experiments which indicate that the theoretical estimates are sharp are presented in the
last section. Throughout this paper, we use standard notation: the operators ∇ and ∆ will be understood to only operate
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