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a b s t r a c t

For the singular saddle-point problems with nonsymmetric positive definite (1, 1) block,
we present a general constraint preconditioning (GCP) iteration method based on a sin-
gular constraint preconditioner. Using the properties of the Moore–Penrose inverse, the
convergence properties of the GCP iteration method are studied. In particular, for each of
the two different choices of the (1, 1) block of the singular constraint preconditioner, a
detailed convergence condition is derived by analyzing the spectrum of the iteration ma-
trix. Numerical experiments are used to illustrate the theoretical results and examine the
effectiveness of the GCP iterationmethod.Moreover, the preconditioning effects of the sin-
gular constraint preconditioner for restarted generalized minimum residual (GMRES) and
quasi-minimal residual (QMR) methods are also tested.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following large, sparse singular saddle-point problems

A x :=


W BT

−B 0

 
u
v


=


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g


= b, (1.1)

where W ∈ Rn×n is nonsymmetric positive definite and B ∈ Rm×n is rank deficient, i.e., rank(B) < m ≤ n, b ∈ Rn+m is
a given vector in the range of saddle-point matrix A ∈ R(n+m)×(n+m). Such kind of linear systems arise in many application
areas, such as computational fluid dynamics, computational genetics, mixed finite element approximation of elliptic partial
differential equations, constrained optimization, optimal control, weighted least-squares problems, electronic networks,
and computer graphics; see [1–4] and references therein.

When the saddle-point matrix A in (1.1) is nonsingular, which requires B being of full row rank, a number of iteration
methods and preconditioning techniques, such as Uzawa-type methods [1,5,6], Krylov subspace methods [7,8], Hermitian
and skew-Hermitian splitting (HSS) iteration methods [9–13], constraint preconditioners [14–16] and so on, have been
proposed to approximate the unique solution of the nonsingular saddle-point problem (1.1). The comprehensive surveys
can be found in Refs. [17,18]. Within these results, the constraint preconditioner of the form

M =


P BT

−B 0


, (1.2)
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with P being positive definite was widely analyzed; see [15,19,20,14,16]. Based on this preconditioner M , Golub and
Wathen [14] studied the following basic iteration scheme

x(k+1)
= x(k)

+ M−1(b − Ax(k)). (1.3)

We call this scheme constraint preconditioning iteration method if M is chosen to be the nonsingular constraint
preconditioner (1.2). Let H and S be respectively the symmetric and the skew-symmetric parts of matrixW , i.e.,

W = H + S, with H =
1
2
(W + W T ) and S =

1
2
(W − W T ).

The convergence properties of (1.3) were derived by Golub andWathen [14]whenmatrix P inM is chosen to be amultiple of
the symmetric part ofW , i.e., P = ωH withω > 0. IfW is not far from a symmetric matrix (i.e., ∥S∥/∥H∥ is a small number),
the preconditioner M with P = ωH is very efficient. However, as can be expected, performance of this preconditioner
with symmetric P deteriorates whenW is essentially nonsymmetric (∥S∥/∥H∥ ≈ 1 or larger). To overcome this deficiency,
Botchev and Golub [19] proposed a novel constraint preconditionerM by choosing the (1, 1) block of (1.2) as

P =
1
ω

(I + ωLs)(I + ωUs), (1.4)

where ω > 0, Ls and Us are, respectively, the lower and upper triangular parts of matrix S satisfying Ls + Us = S and
Us = −LTs . The preconditionerM with the new choice of P used for the iteration scheme (1.3) was proved to be efficient and
robust for solving nonsingular saddle-point problems (1.1) with W being nonsymmetric. Moreover, as a preconditioner, it
also can improve the convergence rate of GMRES method.

When B is rank deficient, saddle-point matrix A in (1.1) is singular. The linear systems (1.1) are called as singular saddle-
point problems. Some iteration methods including Uzawa methods [4,21,22], Krylov subspace methods [3,23] and HSS
iteration methods [24,25] have been used to solve this kind of singular problems. Since preconditioner M defined by (1.2)
is also singular in this case, iteration scheme (1.3) cannot be used to solve singular saddle-point problems (1.1). In 2008,
Cao [26] proposed an iteration scheme by replacing M−1 with MĎ in (1.3) to solve general singular linear systems Ax = b,
that is

x(k+1)
= x(k)

+ MĎ(b − Ax(k)), (1.5)

whereM is a singular matrix depending on the coefficient matrix A,MĎ is the Moore–Penrose inverse of matrixM satisfying
the following Moore–Penrose equations:

MMĎM = M, (MĎM)∗ = MĎM, (MMĎ)∗ = MMĎ, MĎMMĎ
= MĎ. (1.6)

Iteration scheme (1.5) was used later to solve the range-Hermitian singular linear systems by Zhang and Wei in [27],
the numerical efficiencies of this method were also verified. We call iteration scheme (1.5) the general constraint
preconditioning (GCP) iteration method ifM is a singular constraint preconditioner of the form (1.2).

In this work, we are especially interested in the case that matrix B is rank deficient, whichmeans the saddle-point matrix
A in (1.1) and the constraint preconditioner M in (1.2) are both singular. We use GCP iteration method (1.5) to solve the
singular saddle-point problems (1.1). The remainder part of this work is organized as follows. In Section 2, we give the con-
vergence properties of GCP iteration method (1.5) with M being of the form (1.2) and P being any positive definite matrix.
For each of the two different choices of the matrix P , i.e., P = ωH and P = (1/ω)(I + ωLs)(I + ωUs), a detailed condition
that guarantees the convergence of the GCP iteration method is derived in Section 3. In Section 4, numerical results show
that the GCP iteration method (1.5), no matter as a solver or as a preconditioner for GMRES(10) and QMRmethods, is robust
and efficient. Finally in Section 5, we end this work with a brief conclusion.

2. Convergence properties

In this section, we analyze the convergence properties of the GCP iteration method (1.5) with M being defined in (1.2)
and P being positive definite (maybe not symmetric). First, we present the following convergence result of iteration scheme
(1.5) with any singular matrixM:

Lemma 2.1 ([26,28]). Iteration scheme (1.5) is convergent if and only if the following three conditions are fulfilled:

1. null (MĎA) = null (A);
2. index (I − T ) = 1, or equivalently, rank (I − T ) = rank ((I − T )2), where T := I − MĎA is the iteration matrix of (1.5);
3. γ (T ) = max{|λ| : λ ∈ σ(T ) \ {1}} < 1, where σ(T ) is the spectral set of matrix T .

In the following subsections, we analyze the convergence properties of GCP iteration method (1.5), i.e., M is singular
matrix of the form (1.2), according to the three conditions of Lemma 2.1.
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