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a b s t r a c t

In this article the error estimation of the moving least squares approximation is provided
for functions in fractional order Sobolev spaces. The analysis presented in this paper
extends the previous estimations and explains some unnoticed mathematical details. An
application to Galerkin method for partial differential equations is also supplied.
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1. Introduction

TheMoving Least Squares (MLS) approximation was introduced in an early paper by Lancaster and Salkauskas [1] in 1981
with special cases going back to McLain [2,3] in 1974 and 1976 and to Shepard [4] in 1968. For other early studies we can
mention the work of Farwig [5–7]. Since, in MLS one writes the value of the unknown function in terms of scattered data, it
can be used as an approximation to span the trial space in meshless (or meshfree) methods. This approximation has found
many applications in curve fitting and numerical solutions of partial differential equations since early nineties [8–11].

The error analysis of MLS approximation was provided by some authors, beginning with the work of Farwig [7] which
is limited to a univariate case. The connection to Backus–Gilbert optimality was studied by Levin [12] in 1998, and later
it was used by Wendland [13–15] in a more elaborated setting. In [16] the analysis is presented for smooth functions in
Cm+1(Ω)∩Hm+1(Ω). Armentano andDurán [17] proved error estimates in L∞ for the function and its first derivatives in one
dimensional case. Afterward Armentano [18] generalized this tomulti-dimensional cases but it is still restricted to ‘‘convex’’
domains and Sobolev spaces of order one. One can also find an estimation in [19] for reproducing kernel particle methods
(which is related to the MLS approximation) for integer order Sobolev spaces. They assumed a constant bound for the norm
of the inverse matrix (matrix A in text) and considered it for special cases in one dimension and first order approximations.
Note that the role of thismatrix is very crucial in analysis. Thepaper of Zuppa [20] is also limited to some specific situations. In
[13,15] the analysis presented only for the function in classical function spaces.We can alsomention thework ofMelenk [21]
where the theoretical and computational aspects of somemeshless approximationmethods, includingMLS, are considered.

The collocationmethod based on theMLS approximation is called finite pointmethod. An analysis for thismethodhas been
presented in [22]. Besides, an interpolating MLS is developed recently. For error analysis and applications to element-free
Galerkin method see [23,24].

The presentwork is based on the theory ofWendland and extends all the above results to a general case. Allmathematical
details are provided, special care is taken near the boundary, and lower bound for the minimum eigenvalue of the MLS local
matrix is derived in general case, independent of the mesh-size. Besides, the analysis is presented for functions in fractional
order Sobolev spaces. Finally an application to Galerkin methods for elliptic PDEs is investigated.
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2. MLS approximation

Let Ω ⊂ Rd, for positive integer d, be a nonempty and bounded set. In the next section, more conditions on Ω will be
imposed. Assume,

X = {x1, x2, . . . , xN} ⊂ Ω,

is a set containing N scattered points, called centers or data site. Distribution of points should be well enough to pave the
way for analysis.

Henceforth, we use Pd
m, for m ∈ N0 = {n ∈ Z, n > 0}, as the space of d-variable polynomials of degree at most m of

dimension Q =


m+d
d


. A basis for this space is denoted by {p1, . . . , pQ } or {pα}06|α|6m. As usual, B(x, r) stands for the ball

of radius r centered at x.
The MLS, as a meshless approximation method, provides an approximation su,X of u in terms of values u(xj) at centers xj

by

u(x) ≈ su,X (x) =

N
j=1

aj(x)u(xj), x ∈ Ω, (2.1)

where aj are MLS shape functions given by

aj(x) = w(x, xj)
Q

k=1

λk(x)pk(xj), (2.2)

where the influence of the centers is governed by weight functionwj(x) = w(x, xj), which vanishes for arguments x, xj ∈ Ω

with ∥x − xj∥2 greater than a certain threshold, say δ. Thus we can define wj(x) = Φ((x − xj)/δ) where Φ : Rd
→ R is a

nonnegative function with support in the unit ball B(0, 1). Coefficients λk(x) are the unique solution of

Q
k=1

λk(x)

j∈J(x)

wj(x)pk(xj)pℓ(xj) = pℓ(x), 0 6 ℓ 6 Q , (2.3)

where J(x) = {j : ∥x − xj∥2 6 δ} is the family of indices of points in the support of w. In vector form

a(x) = W (x)PT (PW (x)PT )−1p(x),

where W (x) is the diagonal matrix carrying the weights wj(x) on its diagonal, P is a Q × #J(x) matrix of values pk(xj), j ∈

J(x), 1 6 k 6 Q , and p = (p1, . . . , pQ )T . In MLS one finds the best approximation to u at point x, out of Pd
m with respect to a

discrete ℓ2 norm induced by amoving inner product, where the corresponding weight function depends not only on points
xj but also on the evaluation point x in question. Note that A(x) = PW (x)PT is a symmetric positive definite matrix for all
x ∈ Ω . More details can be found in Chapter 4 of [15].

In what follows we will assume that Φ is nonnegative and continuous on Rd and positive on the ball B(0, 1/2). In many
application we can assume that

Φ(x) = φ(∥x∥2), x ∈ Rd,

meaning that Φ is a radial function. Here φ : [0, ∞) → R is positive on [0, 1/2], supported in [0, 1] and its even extension
is nonnegative and continuous on R.

If, further, φ is sufficiently smooth, derivatives of u are usually approximated by derivatives of su,X ,

Dαu ≈ Dαsu,X (x) =

N
j=1

Dαaj(x)u(xj), x ∈ Ω, (2.4)

and they are called standard derivatives. They are different from GMLS or diffuse derivatives [25] which are not the aim of this
paper.

3. Error estimation

Since error estimates will be established using a variety of Sobolev spaces, we introduce them now. Let Ω ⊂ Rd be a
domain. For k ∈ N0, and p ∈ [1, ∞), we define the Sobolev space W k

p (Ω) to consist of all u with distributional derivatives
Dαu ∈ Lp(Ω), |α| 6 k. The (semi-)norms associated with these spaces are defined as

|u|W k
p (Ω) :=


|α|=k

∥Dαu∥p
Lp(Ω)

1/p

, ∥u∥W k
p (Ω) :=


|α|6k

∥Dαu∥p
Lp(Ω)

1/p

.
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