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a b s t r a c t

In this paper, we derive rounding errors of partial derivatives of a simple eigenvalue of
the quadratic eigenvalue problem dependent on several parameters. We prove a series of
lemmas and finally get theorems of rounding errors of both nonsymmetric and symmetric
QEPs. Examples are given to show the validity of our theorems, and numerical results show
that our rounding error is a very good upper bound estimation of the relative error of the
eigenvalue.
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1. Introduction

Consider the following Quadratic Eigenvalue Problem (QEP) dependent on several parameters

Q (p, λ)u = 0, v⊤Q (p, λ) = 0, (1.1)

where Q (p, λ) is a quadratic matrix polynomial of form

Q (p, λ) = λ2M(p) + λC(p) + K(p), (1.2)

p = (p1, p2, . . . , pm)⊤ ∈ Cm is a complex parameter vector, M(p), C(p), K(p) ∈ Cn×n are analytic matrix valued functions
of p on some domain D of Cm. The scalar λ ∈ C and vectors u, v ∈ Cn satisfying (1.1) are called the eigenvalue and its
corresponding right and left eigenvectors of QEP, respectively. It is obvious that λ, u and v are functions of p, i.e., λ = λ(p),
u = u(p), v = v(p). Here after we refer (λ, u, v) as an eigen-triplet of the QEP.

In this paper, we discuss the rounding errors of partial derivatives of simple eigenvalues of the QEP. The derivatives of
the eigenvalues are widely used in many fields such as structural design optimization [1], model updating [2] and damage
detection [3,4]. A large literature exists on computing derivatives of eigenvalues and eigenvectors in both theoretical and
algorithmic aspects. Theoretically, in 1985, Sun [5] first used the implicit function theorem to prove the analyticity theorem
of simple eigenvalue and its corresponding right and left eigenvectors of amatrix dependent on several parameters. In 1993,
Andrew et al. [6] simplified and extended the discussion of Sun to nonlinear matrix functions. A lot of work has been done
on numerical methods, such as Nelson’s method [7,8], algebraic methods [9,10], modal methods [11,4] and recently the
single mode method [12]. In actual practice, the true value of the derivative of the simple eigenvalue is usually unknown,
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so there is a problem that we cannot evaluate how accurately the numerical methods are able to compute the eigenvalue
derivatives. If we can give a rounding error analysis on the eigenvalue derivative, this problem would be considered to be
solved. However, we are not aware of any previously published paper working on rounding errors of partial derivatives of
a simple eigenvalue of the QEP, so we focus on deriving rounding errors in this paper. As we know, most methods compute
partial derivatives of a simple eigenvalue λ(p) with respect to pk at p∗ based on the following equations (see [7,9,11,10,12]
for details):

D(p∗) = 2λ(p∗)M(p∗) + C(p∗), (1.3)

σ(p∗) = v(p∗)
⊤D(p∗)u(p∗), (1.4)

R(p∗) = λ(p∗)
2 ∂M(p∗)

∂pk
+ λ(p∗)

∂C(p∗)

∂pk
+

∂K(p∗)

∂pk
, (1.5)

∂λ(p∗)

∂pk
= −

v(p∗)
⊤R(p∗)v(p∗)

σ (p∗)
. (1.6)

We derive rounding errors according to (1.3)–(1.6) and summarize the results in a theorem, and then we give another
theorem for the symmetric QEP as a special case. At last, we give an example to verify the validity of our theorem, and
numerical results show that our rounding error is a very good upper bound estimation of relative errors of partial derivatives
of the simple eigenvalue.

Hereafter we suppose that there are no storing errors and we eliminate p∗ in (1.3)–(1.6) for convenience, and we denote
∂M
∂pk

, ∂C
∂pk

, ∂K
∂pk

as Mpk , Cpk , Kpk for short respectively.

2. Rounding error

Assume thatM, C, K andMpk , Cpk , Kpk are all computed accurately and have already been stored in the computer. Denote
the evaluation of an expression in floating point arithmetic as fl(·), and let ‘‘◦’’ represent the basic arithmetic operations
+, −, ×, /. Let ε be the machine precision and assume that

1.01nε ≤ 0.01 (2.1)

throughout the rest of paper.
First we list four lemmas of rounding errors in [13,14].

Lemma 2.1. Let α and β be real floating point numbers, then

fl(α ◦ β) = (α ◦ β)(1 + δ), |δ| ≤ ε.

Lemma 2.2. If |δi| ≤ ε and ρi = ±1 for i = 1, . . . , n, and (2.1) holds, then
n

i=1

(1 + δi)
ρi = 1 + θn,

where

|θn| ≤
nε

1 − nε
=: γn ≤ 1.01nε. (2.2)

Lemmas 2.1 and 2.2 yield Lemma 2.3.

Lemma 2.3. Let x, y be two vectors composed of n real floating point numbers, x = (x1, . . . , xn)⊤, y = (y1, . . . , yn)⊤. Then
fl(x⊤y) satisfies

|fl(x⊤y) − x⊤y| ≤ γn|x|⊤|y| ≤ 1.01nε|x|⊤|y|.

Let α = α1 + iα2 and β = β1 + iβ2 be complex floating point numbers (whose real and imaginary parts are both real
floating point numbers), we compute

α ± β = (α1 ± β1) + i(α2 ± β2),

αβ = (α1β1 − α2β2) + i(α1β2 + α2β1),

α/β =
α1β1 + α2β2

β2
1 + β2

2
+ i

α2β1 − α1β2

β2
1 + β2

2
.

(2.3)
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