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a b s t r a c t

We develop the Galerkin method for a recent version of the Lax–Milgram theorem. The
generation of the corresponding finite-dimensional subspaces for concrete boundary value
problems leads us to consider certain biorthogonal systems in the reflexive Banach spaces
in question. In addition, we present an application to the numerical solution of inverse
problems involving certain elliptic boundary value problems.
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1. Introduction

The celebrated Lax–Milgram theorem [1] is a fundamental tool in the theory of variational formulations of linear elliptic
partial differential equations, as well as for their numerical solution. According to its classical and well-known formulation,
it guarantees that any coercive, continuous and bilinear form a on a Hilbert space H with inner product ⟨·⟩ represents the
space, in the sense that for all y0 ∈ H there exists a unique x0 ∈ H such that

y ∈ H ⇒ a(x0, y) = ⟨y0, y⟩, (1.1)

and in addition ∥x0∥ depends both on the coercivity constant of a and ∥y0∥. Recently, in [2] an extension of this result has
been stated in the setting of locally convex spaces. Such a version of the Lax–Milgram theorem not only generalizes the
framework in which this result works, but also characterizes when a fixed functional is represented by an adequate bilinear
form. In the normed case this characterization is given in terms of the existence of a constant.

In this paper we deal with several questions. On one hand, we derive the numerical stability of the Galerkin method
corresponding to the mentioned Lax–Milgram-type result. In connection with this kind of schemes for different problems,
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let us mention that an intensive research has been developed in the last decades, as show the recent works [3–11] and the
references therein. On the other hand, we apply the generalized Lax–Milgram theorem to solve numerically some boundary
value inverse problems, thus extending the applicability of the collage method proposed in [12,13].

More precisely, in Section 2 we recall the Lax–Milgram theorem [2, Theorem 1.2] for those locally convex spaces for
which the notion of approximation makes sense, that is, for the normed ones, and we consider the corresponding Galerkin
approximation scheme and analyze its numerical stability, arriving at a version of Céa’s inequality in this context. In
Section 3, the use of adequate biorthogonal systems in certain reflexive Banach spaces allows us to generate Galerkin’s
methods for the approximation of a wide class of problems, as well as stating their stability. We illustrate it with some
numerical examples. Finally, in Section 4 we modify the collage type result given in [12,13] by means of the generalized
Lax–Milgram theorem and the use of biorthogonal systems in reflexive Banach spaces. This generalization provides us with
a numerical method for solving new examples of boundary value inverse problems for which the original collage theorem
does not apply. We also include an example concerning the numerical solution of boundary value inverse problems. For
simplicity, we deal only with real spaces, although our results can also be established for the complex case in an easy and
straightforward way.

2. Numerical stability of the Galerkin scheme

In this section we recall the mentioned version of the Lax–Milgram theorem, but for the reflexive context, instead for the
more general locally convex one, since it suffices for our purposes. We also provide the corresponding Galerkin approach to
that generalized Lax–Milgram theorem, as well as an extension of the classical Céa estimate of the error.

We begin by reviewing some standard notation: given real linear spaces E and F , a bilinear form a : E × F −→ R, x0 ∈ E
and y0 ∈ F , a(·, y0) denotes the linear functional on E

x ∈ E −→ a(x, y0) ∈ R,

whereas a(x0, ·) stands for the analogous linear functional on F . Additionally, given a real normed space E, we write E∗ for
its topological dual space. Finally, ()+ is the positive part, i.e., for t ∈ R, (t)+ = max{t, 0}. The generalized Lax–Milgram
theorem is stated in these terms (see [2, Corollary 1.3]):

Theorem 2.1. Assume that E is a real reflexive Banach space and that F is a real normed space, y0 ∈ F∗, a : E × F −→ R is
bilinear and that C is a nonempty convex subset of F such that for all y ∈ C, a(·, y) ∈ E∗. Then

there exists x0 ∈ E such that for all y ∈ C, y∗

0(y) ≤ a(x0, y) (2.1)

if, and only if,

there exists α > 0 such that for all y ∈ C, y∗

0(y) ≤ α∥a(·, y)∥. (2.2)

In addition, if one of these equivalent statements is satisfied and for some y ∈ C we have that a(·, y) ≠ 0, then

min{∥x0∥ : x0 ∈ E and for all y ∈ C, y∗

0(y) ≤ a(x0, y)} =


sup

y∈C, a(·,y)≠0

y∗

0(y)
∥a(·, y)∥


+

. (2.3)

Let us note that when C is balanced, that is, C = −C , inequality (2.1) becomes an equality. Furthermore, for such a C we
have an easy but useful result characterizing the uniqueness in the variational inequality (2.1), which is nothing more than
that of the corresponding homogeneous problem:

Lemma 2.2. Let E and F be real vector spaces, let C be a nonempty convex and balanced subset of F , let a : E × F −→ R be a
bilinear form and let y∗

0 : F −→ R be a linear functional. Suppose that the variational equation

find x0 ∈ X such that y ∈ C ⇒ y∗

0(y) = a(x0, y) (2.4)

has a solution. Then, it is unique if, and only if,

x ∈ E and for all y ∈ C, a(x, y) = 0 ⇒ x = 0. (2.5)

Proof. Assume that problem (2.4) admits a unique solution x0 ∈ E, and let x ∈ E such that

for all y ∈ C, a(x, y) = 0.

Then

for all y ∈ C, y∗

0(y) = a(x0 + x, y)
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