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a b s t r a c t

In the paper Barrera et al. (2014), a boolean sum differential quadrature method (DQM)
was proposed by combining a spline interpolation operator having a fundamental function
with minimal compact support and a spline quasi-interpolation operator reproducing the
polynomials in the spline space. It is a general framework that provides results that differ
from the ones obtained by defining specific schemes with structures which depend on the
degree of the B-spline to be considered. The main drawback of these boolean sum DQMs is
that the number of evaluation points increases quickly with the degree of the B-spline due
to the use of a quasi-interpolation operator. We propose a different construction avoiding
this problem and derive explicit results for low degree B-splines.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Differential Quadrature Method (DQM) is a numerical technique proposed by Bellman and coworkers in the early
1970s for solving differential equations by discretizing spatial derivatives by means of weighted sums of function values
(cf. [1,2] and references quoted therein), i.e.

f (r) (xi) ≃

N
j=1

a(r)
ij f


xj

,

for some positive integer N and real numbers a(r)
ij . Being the main task to determine the weights a(r)

ij , Lagrangian polynomial
interpolation is commonly used, so that the classical DQM is polynomial-based. It is well known that the number of grid
points involved must be small to avoid the obtention of unstable solutions (see [3,4]). Therefore, some spline based DQMs
have been proposed to overcome this drawback. Given a B-spline (cf. [5,6]), a cardinal Lagrangian or Hermitian interpolation
spline with a compactly supported fundamental function is defined, fromwhich the approximation of the derivatives is ob-
tained. But the construction of this spline interpolant depends strongly on the degree of the B-spline (see for instance [7–10]).
In [3], natural interpolating splines of odd degree are used to produce the spline interpolant from which the derivatives of
the function to be approximated are computed. Also two algorithms are given in [11] to determine theweights a(r)

i , although
it is necessary to solve some intermediate linear systems of equations.

In [12], a boolean sum based DQM was proposed by combining a spline interpolation operator having a fundamental
function with minimal compact support and a spline quasi-interpolation operator exact on the space of polynomials in the
spline space. It is a general framework that provides results that differ from the ones obtained by defining specific schemes

∗ Corresponding author. Tel.: +34 958 24 80 81; fax: +34 958 24 85 96.
E-mail addresses: dbarrera@ugr.es (D. Barrera), prodelas@ugr.es (P. González), fibanez@gruposyv.com (F. Ibáñez), mibanez@ugr.es (M.J. Ibáñez).

http://dx.doi.org/10.1016/j.cam.2014.07.021
0377-0427/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2014.07.021
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2014.07.021&domain=pdf
mailto:dbarrera@ugr.es
mailto:prodelas@ugr.es
mailto:fibanez@gruposyv.com
mailto:mibanez@ugr.es
http://dx.doi.org/10.1016/j.cam.2014.07.021


D. Barrera et al. / Journal of Computational and Applied Mathematics 275 (2015) 272–280 273

with a structure which depends on the degree of the B-spline to be considered. The main drawback of these boolean sum
based DQMs is that the number of evaluation points increases quickly with the degree of the B-spline due to the use of a
quasi-interpolation operator.

The goal of this paper is to improve the results obtained in [12] by providing a general method to construct DQMs from
the solution of suitable spline interpolation problems. This method does not require the use of quasi-interpolation.

The remainder of this paper is structured as follows. In Section 2, we recall the two-stage construction based on quasi-
interpolation. In Section 3, we consider the construction of DQMswithout using quasi-interpolation.We give explicit results
for low degree B-splines of even and odd orders in Sections 4 and 5, respectively. Finally, in Section 6 we analyze their
corresponding error estimates.

2. Spline differential quadrature method based on quasi-interpolation

In [12], a general spline-based DQM was proposed by combining interpolation and quasi-interpolation. Let Mn be the
B-spline of order n ≥ 2 centered at the origin (cf. [5,13]). It is well known that it can be defined by successive convolutions: if

M1 (x) :=

1, if x ∈
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is the characteristic function of the interval

−

1
2 ,

1
2


, then Mn is defined by the recurrence relation

Mn (x) =

 x+ 1
2

x− 1
2

Mn−1 (t) dt, n > 2.

It holds that Mn is a Cn−2 (R) piecewise polynomial function of degree n − 1 supported on

−

n
2 ,

n
2


having knots at the

half-integers 1
2 + Z (resp. at the integers Z) for n odd (resp. even).

The first step to define the general spline-based DQMwas to consider the space Vn spanned by the translatesMn (2 · −j)
in order to construct the minimally supported fundamental function Ln of the required interpolation operator Ln. It has the
form

Ln =


j∈J

cjMn (2 · −j)

for some cj ∈ R, J being a finite subset of Z. We impose that Ln satisfies the interpolation conditions

L (j) = δj,0, j ∈ Z, (1)
where δ stands for the Kronecker’s delta.

Since the Laurent polynomials Φk (z) :=


j∈Z Mn (2j + k) z2j, k = 0, 1, have no common zeros in C \ {0} (see [12,14]),
it follows that (see [15]) any finite sequence c satisfying the identity

Φ0


j∈Z

c2je2j + Φ1


j∈Z

c2j+1e2j+1 = 1

provides such a function Ln. Here the notation e0(z) := 1 and ek(z) := zk, k ≥ 1 for the monomials is used. The following
result on symmetric functions Ln with a small support was proved in [12] in a more general framework (see also [14]).

Proposition 1. For each n ≥ 4, let J := {−dn, . . . , dn} where

dn :=


⌊r⌋ − 2, for n even,
⌊r⌋ − 1, for n odd,

and ⌊r⌋ denotes the integer part of r ∈ R. Then, there are coefficients aj, 0 ≤ j ≤ 2dn such that the function

Ln = a0Mn (2 · +dn) + · · · + a2dnMn (2 · −dn)

satisfies the interpolation conditions

L (j) = δj,0, j ∈ Z.

It follows that

supp Ln ⊂
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, for n odd.

Once defined the fundamental function Ln, the interpolation operator Ln is given by

Ln (f ) :=


i∈Z

f (i) Ln (· − i) .
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