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a b s t r a c t

A semilinear parabolic problem of second order with an unknown solely time-dependent
convolution kernel is considered. An additional given globalmeasurement (a space integral
of the solution) ensures the existence of a unique weak solution. The unknown kernel
function can be approximated by a time-discrete numerical scheme based on Backward
Euler’s method (Rothe’s method). In this contribution, an error analysis for the time
discretization is performed of the existing numerical algorithm. Numerical experiments
support the theoretically obtained results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this contribution, the domainΩ is a bounded Lipschitz domain inRN ,N ≥ 1, with ∂Ω = Γ andΘ = [0, T ], T > 0, the
time frame. The aim of this paper is to derive estimates for the distance between the discrete and continuous solution of a
semilinear parabolic problem. The former is based on a time-discrete numerical scheme, described in [1], that approximates
the solution of the following semilinear parabolic problem: determine the solution u and the convolution kernel K(t) such
that 

∂tu(x, t) − ∆u(x, t) + K(t)h(x, t) + (K ∗ u(x))(t) = f (u(x, t), ∇u(x, t)), in Ω × Θ,

−∇u(x, t) · ν = g(x, t), on Γ × Θ,

u(x, 0) = u0(x), in Ω

(1)

when an additional global measurement
Ω

u(x, t)dx = m(t) (2)

is satisfied. Note that the data functions h : Ω × Θ → R, f : R × RN
→ R, g : Γ × Θ → R, u0 : Ω → R andm : Θ → R

are known, and time-convolution is defined as

(K ∗ u(x))(t) =

 t

0
K(t − s) u(x, s)ds, t ∈ Θ.
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Regarding f , one can replace it with f + ϕ where ϕ : Ω × Θ → R is sufficiently regular. Such type of problems arise in
the theory of reactive contaminant transport. In [2] one considers the following differential equation

∂tC + ∇ · (VC) − ∆C =
−ρb

n
∂tS (3)

for the aqueous concentration C and sorbed concentration per unit mass of solid S with mass transformation rate in first
order form of

∂tS = Kr(KdC − S)

with desorption rate Kr and equilibrium distribution coefficient Kd. This can be formally solved as

S(t) = e−Kr tS(0) + KrKd

 t

0
e−Kr (t−ξ)C(ξ)dξ .

Therefore, (3) can be rewritten as problem (1) for u = C with K(t) = −
ρb
n K 2

r Kde−Kr t and h(t) =
S(0)
KrKd

. For an overview in
the literature of papers dealing with integral overdetermination one may refer to [3–11]. Denote by (·, ·) the standard inner
product of L2(Ω) and ∥ · ∥ its induced norm. The variational formulation of problem (1) reads as:

find ⟨u(t), K(t)⟩ ∈ H1(Ω) × R with ∂tu(t) ∈ L2(Ω) such that for all φ ∈ H1(Ω, R) it holds

(∂tu, φ) + (∇u, ∇φ) + (g, φ)Γ + K(t)(h, φ) + (K ∗ u, φ) = (f (u, ∇u), φ), a.e. t ∈ Θ, (P)

and such that the global measurement (2) is satisfied.
If we set φ = 1 in (P) we obtain together with (u, 1) = m(t)

m′(t) + (g, 1)Γ + K(t)(h, 1) + K ∗ m = (f (u, ∇u), 1). (MP)

In [1], the authors proved the following existence and uniqueness theorem for the inverse problem:

Theorem 1 (See [1]). Suppose f is bounded and Lipschitz continuous in all variables, g ∈ C1(Θ, L2(Γ )), h ∈ C0(Θ,H1(Ω)) ∩

C1(Θ, L2(Ω)) and mint∈Θ |(h(t), 1)| ≥ ω > 0, m ∈ C2(Θ, R) and u0 ∈ H2(Ω). Then there exists a unique couple solutions
⟨u, K⟩ to (P)–(MP), where u ∈ C(Θ,H1(Ω)), ∂tu ∈ L∞(Θ, L2(Ω)) and K ∈ C(Θ), K ′

∈ L2(Θ).

The outline of this paper is as follows. In Section 2, a time-discrete scheme to approximate the solution to problem (1)–(2)
is described. The corresponding error estimates are derived in Section 3. Finally, some numerical experiments are developed
in Section 4.

2. Numerical scheme

2.1. Discretization

We apply the Rothe method [12,13]. Consider an equidistant time-partitioning of the time frame Θ with a step τ =

T/n < 1, for any n ∈ N. We use the notation ti = iτ and for any function z we write

zi = z(ti), δzi =
zi − zi−1

τ
.

At time ti we infer from (P) the backward Euler scheme

(δui, φ) + (∇ui, ∇φ) + (gi, φ)Γ + Ki(hi, φ) +

i
k=1

(Kkui−kτ , φ) = (fi−1, φ) (DPi)

where fi = f (ui, ∇ui). This is conveniently written as B(ui, φ) = Fi(φ) with

B(ui, φ) =
1
τ

(ui, φ) + (∇ui, ∇φ), Fi(φ) = (fi−1, φ) − (gi, φ)Γ − Ki(hi, φ) −

i
k=1

(Kkui−kτ , φ) +
1
τ

(ui−1, φ).

Analogously, we obtain from (MP)

m′

i + (gi, 1)Γ + Ki(hi, 1) +

i
k=1

Kkmi−kτ = (fi−1, 1). (DMPi)

Using (DPi) and (DMPi) the numerical algorithm is as follows:
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