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a b s t r a c t

Ablockmatrix analysis is proposed to justify, andmodify, a knownalgorithm for computing
in O(n) time the determinant of a nonsingular n × n pentadiagonal matrix (n ≥ 6) having
nonzero entries on its second subdiagonal. Also, we describe a procedure for computing the
inverse matrix with acceptable accuracy in O(n2) time. In the general nonsingular case, for
n ≥ 5, proper decompositions of the pentadiagonal matrix, as a product of two structured
matrices, allow us to obtain both the determinant and the inversematrix by exploiting low
rank structures.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A nonsingular n × n matrix P =

pij

1≤i,j≤n is pentadiagonal if pi,j = 0 for |i − j| > 2. These play an important role in

contemporary numerical analysis. They arise frequently in numerical methods for solving ordinary and partial differential
equations, interpolation schemes, and spline problems, [1]. Also, pentadiagonal matrices appear in fine approximations of
second order derivatives, and in boundary value problems involving fourth order derivatives. Gaussianmethodswith partial
pivoting are usually used for the inversion of such matrices. However, these methods can destroy the low rank structure
and sparsity of pentadiagonal matrices; e.g. by row-interchange operations. Therefore, specialized techniques adapted to
the low rank structure of pentadiagonal matrices are of interest.

Some specific parallel and sequential algorithms for the inversion of pentadiagonal matrices are already known. A recur-
sive procedure for calculating in O(n2) time the inverse matrix P−1 of a pentadiagonal matrix P having nonzero entries on
its second superdiagonal, pi,j ≠ 0 for j − i = 2, was given in [2]. In [3] there was proposed a different sequential procedure,
having computational complexity O(n2), for pentadiagonal matrices having an LU (Doolittle) factorization.

Fast numerical algorithms for computing the determinants of pentadiagonal matrices are also needed to test efficiently
for the existence of unique solutions of partial differential equations, and for solving the inverse problem of constructing
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symmetric pentadiagonal Toeplitz matrices. Some methods having complexity O(n) have been obtained; see e.g. [4–8].
Building upon such results, in Section 2 we introduce a block matrix analysis to justify, in terms of matrix cofactors, the
algorithm given in [6] for computingwith complexityO(n) the determinant, det P, of a pentadiagonalmatrix having nonzero
entries on its second subdiagonal. This kind of matrix is currently used in numerical methods. Since it is not hard to do, we
find it convenient subsequently to adapt this algorithm to compute in O(n2) time the entire inverse matrix P−1, up to an
acceptable accuracy. Analogous results can also be obtained for pentadiagonalmatriceswith nonzero entries on their second
superdiagonals.

A specific procedure for computing both the determinant and the inverse of any nonsingular pentadiagonal matrix P,
taking advantage of its low rank structure, with no further conditions on its entries, remains an open question. In Section 3
we propose factorizations appropriate for the general nonsingular case where the pentadiagonal matrix P is decomposable
as a product of two structured matrices; e.g. upper Hessenberg matrices (see also [9]). This enables us to exploit the low
rank structure of (sparse) structured matrices, including triangular, tridiagonal, and Hessenberg matrices, to compute both
the determinant, det P, and the inverse P−1. Illustrative comparisons, examples, and remarks are also presented.

2. Pentadiagonal matrices having nonzero entries on their second subdiagonals

For an n × n (n ≥ 6) nonsingular pentadiagonal matrix with nonzero entries on its second subdiagonal we assume the
2 × 2 block structure,

P =


P11 02
U P22


. (1)

The submatrices P11 and P22 have dimensions 2 × n − 2 and n − 2 × 2, respectively. The matrix 02 is the 2 × 2 zero
matrix. The n − 2 × n − 2 nonsingular matrix U is upper triangular. The transposed partition,

P−1
=


−U−1P22M21 U−1

+ U−1P22M21P11U−1

M21 −M21P11U−1


, (2)

of its inverse is well known; see e.g. [10]. Here, M21 =
1

det P


C1,n−1 C2,n−1
C1,n C2,n


is calculated using the classical Cayley cofactor

formula for the inverse. The Ci,j are cofactors of P. Therefore, the inverse matrix

P−1
=


−U−1P22

I2


M21


I2 −P11U−1

+


0n,2 U−1

02 02,n


, (3)

can be seen as a rank two perturbation of a strictly upper triangular matrix, [10]. All the information required for the inver-
sion ofP is contained in the submatricesM21 andU−1. As a result, we can calculateP−1 using simplematrix products as in (3).

2.1. Computing the determinant in O(n) time

A compact expression for calculating the determinant of a nonsingular pentadiagonal matrix having nonzero entries on
its second superdiagonal was given in [6]. It also applies to a matrix having nonzero entries on its second subdiagonal. A
sequential algorithm for computing det Pwith complexity O(n)was also given. In order to justify, in terms of a computation
using matrix cofactors, the formula for det P given in [6], we introduce a second pentadiagonal matrix, P∗, associated with P
and having ones on its second subdiagonal. A variant of this related algorithm, together with (3), allows us to compute the
full inverse matrix P−1.

Proposition 1. Let P be an n × n (n ≥ 6) nonsingular pentadiagonal matrix having nonzero entries on its second subdiagonal.
With P we associate the matrix P∗

= P · diag


1
p31

, 1
p42

, . . . , 1
pn,n−2

, 1, 1

. The determinant of P is given by

det P =


n−2
k=1

pk+2,k


det


C∗

1,n−1 C∗

2,n−1
C∗

1n C∗

2n


, (4)

where the C∗

ji are cofactors of the matrix P∗. Moreover, det P can be computed in O(n) time.

Proof. First, we note that det P =

n−2
k=1 pk+2,k


det P∗. Then we must demonstrate that det P∗

= det

C∗
1,n−1 C∗

2,n−1
C∗
1n C∗

2n


. The

matrix P∗ is pentadiagonal, with ones on its second subdiagonal.
Partitioning P∗ as in (1) and P∗−1 as in (2), we obtain a partition of the identity matrix In, where


P∗P∗−1


11 = I2. That

is, −P∗

11U
∗−1P22M∗

21 = I2. Since the matrix U∗ in (1) is upper triangular with ones on its main diagonal, applying the nullity
theorem [11], we conclude that the 2 × 2 matrix entry M∗

21, in the transposed partition of P∗−1, is nonsingular. Therefore,
we have

1
det P∗


C∗

1,n−1 C∗

2,n−1
C∗

1n C∗

2n


= M∗

21 =

−P∗

11U
∗−1P22

−1
. (5)
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