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a b s t r a c t

Many physics problems can only be studied by coupling various numerical codes, each
modeling a subaspect of the physics problem that is addressed. In most cases, the ‘‘brute
force’’ technique of running the codes one after the other in a loop until convergence is
reached requires excessive CPU time. The present paper illustrates that re-writing the cou-
pling as a root-finding problem, to which a quasi-Newtonmethod – here the (Inverse) Col-
umn Updating Method – can be applied, is useful to push down the computation time, at
the expense of a verymodest amount of supplementary programming. A simplified version
of the set of codes commonly used to describe plasma heating by radio frequency waves
in a tokamak plasma is adopted for illustrating the potential of the speed-up method. It
consists of a wave equation as well as a Fokker–Planck velocity space diffusion and a radial
energy diffusion model. It is shown that with this approach a substantial reduction in CPU
time needed for convergence can be obtained.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many physics problems are too complicated and/or too CPU time consuming to be addressed by a single set of simultane-
ously solved equations. A typical example is the description of phenomena occurring on two or more differing time scales.
Tackling the problem adopting the general set of equations forces one to bring the numerical time step down to the charac-
teristic time τfast onwhich the fastest of the phenomena occurs, even if relevant slower processes happen on τ ’s many orders
of magnitude different from τfast. Such a procedure yields unnecessarily long computation times. Analytically separating the
time scales yields sets of coupled equations, one set for each of the time scales, allows to tackle the problem faster [1,2].
Intelligent schemes for solving the resulting coupled sets of equations allow to further reduce the computation time for a
given prescribed accuracy. A particular example – a simplified version of which is considered in the present paper – is the
fast, driven response of a tokamak plasma to an electromagnetic perturbation brought about by a radio frequency (RF) or ion
cyclotron resonance heating (ICRH) antenna in a magnetized tokamak plasma, and the (net) effect this has on the plasma.
This type of wave heating is instrumental in magnetic confinement thermonuclear fusion devices to bring plasmas to fusion
relevant temperatures at which fusion spontaneously occurs. In present-day devices (having strong static magnetic fields of
several Tesla to confine the charged particles), the direct, driven response rate to the external excitation is about 8 orders of
magnitude faster than the macroscopic response of the plasma to this excitation. Hence, on the fast time scale equilibrium
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macroscopic quantities such as temperature and density can be assumed to be constant in time. On the slow time scale, the
details ofwhat happens during a driving cycle are irrelevant so the fast time scale effects canbe considered as purely driven at
a prescribed frequency –without transients – so that only the net effect over a driver period is of consequence. A scheme cap-
turing the process of plasmaheating by RFwaves then looks as follows: The RF electric field pattern changes as a consequence
of the density and temperature changes, while the density and temperature change as a consequence of the changing local
power level brought about by the changingwave pattern. This allows a self consistentmodeling of thewave heating physics.

Thehere adopted simplified problem (referred to as ‘‘toy problem’’) consists of awave equation, a Fokker–Planck equation
and a diffusion equation, all of which are simplified versions of corresponding equations treating the wave–particle and
particle–particle interactions more rigorously. Each equation is solved separately using its own solver. The simple loop
philosophy of the physics model (which was initially used to tackle the wave heating problem by brute force) is as follows:

(1) The computation is started from a given initial temperature profile. All other physical parameters and profiles are frozen
in time and space (e.g. particle diffusion is not accounted for, i.e. the density is assumed not to be affected by the waves).

(2) Radio frequency waves are launched into a tokamak plasma using an antenna. These waves are evanescent close to the
antenna and become propagative inside the plasma,where they are damped by collisionless damping. The energy locally
deposited is redistributed in two ways:
(a) For the heated minority species, the distribution function is modified – a high energy tail being formed – and the

energy of the particles (the effective temperature) increases. The heated species interact with the other plasma
constituents, thereby indirectly heating them. The balance between heating through wave–particle interaction and
cooling through particle–particle Coulomb collisional interaction is described by the Fokker–Planck equation. For
this toy problem only the Fokker–Planck equation of the minority is solved.

(b) The electrons andmajority ions indirectly receive power from theminority species through Coulomb collisions; due
to the simplifications in the wave equation model direct heating mechanisms for these bulk species are excluded.
The energy, the bulk species receive from theminority gas diffuses through the plasma. A diffusion equation is solved
to track the fate of this energy, setting up a new temperature profile.

(3) The new and old temperature profiles are compared. If the changes are significant, the computation returns to (1); if
not, the computation ends.

The speed-up realized in this paper adopts steps 2a, 2b and 3 but substitutes the simple loop by amore sophisticated scheme.
This paper is structured as follows: in Section 2 the different parts of the physics model are explained, in Section 3 we

show how these can be solved and compare the different methods. We end with a short conclusion.

2. Description of the adopted model

In this section the three adopted equations are briefly sketched. The focus is on explaining the philosophy of the simplifi-
cations, and the role of the retained equation rather than on the actual derivation of the equations, all of which are standard.
The interested reader can e.g. consult [3–5] for more details on the wave–particle and particle–particle interaction physics
involved.

2.1. Wave equation

Maxwell’s equations relate the electric and magnetic field to currents and charges. Eliminating the magnetic field yields
an equation for the electric field,

∇ × ∇ × E = k2oE + iωµo[Jantenna + Jplasma], (1)

inwhich ¯̄K ·E = E+iJplasma/ωϵo with ¯̄K the dielectric tensor,ω the antenna frequency andwhere the J⃗ ’s are current densities,
either flowing on the antenna or inside the plasma. When only the fast time scale driven motion is retained, the equation of
motion can locally be solved and the driven velocity can be expressed in terms of the electric field. As J⃗plasma =


α qα⟨v⃗⟩ in

which ⟨v⃗⟩ is the average wave-driven velocity (the sum is on the various types of species the plasma consists of), this yields
a constitutive expression relating the plasma current and the electric field via which the dielectric tensor ¯̄K is defined.

Rather than solving the wave equation in 3 dimensions and for all 3 electric field components, only the dominant electric
field components excited by a fast wave antenna will be retained and inhomogeneity of the macroscopic quantities is only
allowed in one direction. The fast ‘‘magnetosonic’’ wave is the longest wavelengthwave that can be sustained in the plasma;
it is the temperature (and density) corrected vacuum wave characterized by a driven electric field almost perpendicular to
the confining magnetic field B⃗o and by a magnetic field that is aligned with B⃗o; the driven magnetic and electric field is
related through Maxwell’s equation ∇ × E⃗ = iωB⃗, where ω is the frequency of the antenna-driven oscillation. This wave
carries its energy electromagnetically i.e. via the Poynting flux. The dominant component of the confiningmagnetic field in a
tokamak is in the toroidal direction, identified herewith the z-direction; the antenna is replaced by a current sheetwith only
a component in the y-direction, the latter representing the poloidal direction. As only the fast magnetosonic wave is excited,
the electric field component parallel to the confining magnetic field can be omitted in a first approximation. Furthermore,
the dielectric tensor will be truncated at its leading order finite temperature corrections. Assuming the z- and y-directions
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