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a b s t r a c t

One-leg multistep methods have some advantage over linear multistep methods with re-
spect to storage of the past results. In this paper boundedness and monotonicity prop-
erties with arbitrary (semi-)norms or convex functionals are analyzed for such multistep
methods. The maximal stepsize coefficient for boundedness andmonotonicity of a one-leg
method is the same as for the associated linear multistep method when arbitrary start-
ing values are considered. It will be shown, however, that combinations of one-leg meth-
ods and Runge–Kutta starting procedures may give very different stepsize coefficients for
monotonicity than the linear multistep methods with the same starting procedures. De-
tailed results are presented for explicit two-step methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The ODE systems and basic assumption
We consider systems of ordinary differential equations (ODEs) with given initial value in a vector space V,

u′(t) = F(u(t)), u(0) = u0, (1.1)

where F : V → V and u0 ∈ V. Throughout this paper we will make the following basic assumption: there is a constant
τ0 > 0 such that

∥v + τ0F(v)∥ ≤ ∥v∥ for all v ∈ V, (1.2)

where ∥ · ∥ denotes a norm, seminorm, or convex functional on V (cf. Section 2).
It is easy to see that (1.2) implies ∥v + 1t F(v)∥ ≤ ∥v∥ for all 1t ∈ (0, τ0]. Consequently, applying the forward Euler

method un = un−1+1t F(un−1), n ≥ 1,with stepsize1t > 0 to compute approximations un ≈ u(tn) at tn = n1t , we obtain
∥un∥ ≤ ∥u0∥ for n ≥ 1 under the stepsize restriction 1t ≤ τ0. For general one-step methods, this property under a stepsize
restriction 1t ≤ γ τ0 is often referred to as monotonicity or strong stability preservation (SSP). For multistep methods this
can be generalized in several ways, which will be addressed in this paper.
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Linear multistep and one-leg methods
In this paper we will consider one-leg and linear multistep methods for finding the approximations un ≈ u(tn) at the

step points tn = n1t, n ≥ 1. It is supposed that starting vectors u0, u1, . . . , uk−1 ∈ V are known.
A linear multistep (LM) method applied to (1.1) reads

un =

k
j=1

ajun−j + 1t
k

j=0

bjF(un−j) (1.3)

for n ≥ k. The parameters aj, bj and k ∈ N define the method. Along with this linear multistep method, we also consider the
corresponding k-step one-leg (OL) method

un =

k
j=1

ajun−j + 1tβF(vn), vn =

k
j=0

b̂jun−j (1.4)

for n ≥ k, where b̂j = bj/β and β =
k

j=0 bj ≠ 0. If b0 = 0 these multistep methods are called explicit, and if b0 ≠ 0 they
are called implicit.

One-leg methods were introduced by Dahlquist [1], originally only to facilitate the analysis of linear multistep methods.
Subsequently, it was realized that one-leg methods might be useful on their own, not just as an analysis tool. It is known
that the conditions for consistency of order p are the same if p = 1, 2, but for larger p the one-leg method has to satisfy
more order conditions than the corresponding linear multistep method; cf. [2], for instance.

On the other hand, one-leg methods have an advantage over the corresponding linear multistep methods with respect
to storage, which is often important for large-scale problems when function evaluations of F are expensive. If, for example,
b0 = 0 but ak, bk ≠ 0, then for a step (1.3) with the linear multistep method we need storage of the vectors un−1, . . . , un−k
and F(un−2), . . . , F(un−k), together with an evaluation of F(un−1). For a step (1.4) with the one-leg method only storage of
un−1, . . . , un−k is needed, together with evaluation of F(vn).

Scope of the paper
In this paper we will first consider the property

∥un∥ ≤ µ · max
0≤j<k

∥uj∥ for all n ≥ k and 0 < 1t ≤ γ τ0, (1.5)

whenever the basic assumption (1.2) is satisfied. Here the factor µ ≥ 1 and the stepsize coefficient γ ≥ 0 are determined
by the multistep method, and we are interested in having γ > 0 as large as possible. If (1.5) holds with µ = 1, then this
property will be called monotonicity. For many interesting methods, this property (1.5) will only hold with some µ > 1, in
which case we refer to it as boundedness.

It is known, see e.g. [3,4], that the condition for monotonicity for either the linear multistep method (1.3) or the one-leg
method (1.4) reads

aj ≥ γ bj ≥ 0 (1 ≤ j ≤ k). (1.6)

This requires that all coefficients of themethod are non-negative,which severely restricts the class ofmethods. It is therefore
of interest to study more relaxed properties.

The boundedness property (1.5) with some µ ≥ 1, has been studied for linear multistep methods. Sufficient stepsize
conditions 1t ≤ γ τ0 were derived in [5,6] for having (1.5) with arbitrary seminorms under the basic assumption (1.2).
More simple conditions were found in [7], and these conditions were shown be necessary as well as sufficient.

In (1.5) the starting values u1, . . . , uk−1 are arbitrary. In practice these starting values will be computed from the given
initial value u0, for instance by a Runge–Kutta method. For such combinations of multistep methods and Runge–Kutta
starting procedures the following monotonicity property

∥un∥ ≤ ∥u0∥ for all n ≥ 1 and 0 < 1t ≤ γ τ0, (1.7)

can still be valid, even if the multistep method itself is not monotone, but only bounded for arbitrary starting values, that is,
(1.5) is valid with µ > 1, not with µ = 1.

For some combinations of linear multistep methods and Runge–Kutta starting procedures, the monotonicity property
(1.7) was studied in [7], where conditions were derived with arbitrary seminorms and nonnegative sublinear functionals.
Earlier, for some two-step methods, sufficient conditions with seminorms were found in [5].

In this paper we will first describe in Section 2 a general framework for having boundedness with arbitrary starting
vectors, or monotonicity with starting procedures. This framework, which is valid for general multistep multistage
methods, will be based on the approach of Spijker [4] for monotonicity, and of Hundsdorfer, Mozartova and Spijker [8]
for boundedness. The results will then be applied to linear multistep methods and one-leg methods. For this, the methods
will be formulated in Section 3 in terms of input and output processes, so that the general framework is applicable.
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