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a b s t r a c t

In this paper, a method with very high order of convergence is constructed and analyzed.
The method is used to compute generalized inverses. The efficiency index has been em-
ployed to show its superiority. Numerical experiments re-verify that the proposed iterative
expression is more effective than the existing methods of the same type.
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1. Introductory notes

High-order matrix iterative methods for finding generalized inverses appeared for the first time in [1] and then they
were extensively studied in some recent papers (see e.g. [2–4]). This class of iteration methods has drawn a considerable
attention in recent years, which led to the construction of many good methods of this type (see e.g. [5] and the references
therein).

The reason for the revived interest in this area is a nice property of high-order methods to overcome theoretical limits
of low-order ones concerning the convergence order, informational efficiency and computational efficiency, which are of
great practical importance.

High-order matrix methods are primarily introduced with the aim to achieve as high as possible order of convergence
using a fixed number of matrix–matrix multiplications (mmm). Since the most impressive cost in implementing such
methods (also known as Schulz-type methods) is the cost of mmm. This is closely connected to the definition of important
indices such as informational efficiency and computational efficiency indices.

In this work, we consider the latter, i.e. the efficiency index defined by

EI = p
1
θ , (1)

where p and θ are the convergence order and the number of mmm per cycle of a matrix iterative method.
Considering (1), we are aimed at designing a new iterative method of very high order of convergence which is also

economic. That is to say, its computational efficiency index must be reasonable for finding generalized inverses.
Assume that A ∈ Cm×n

r is a matrix of rank r , T is a subspace of Cn of dimension t ≤ r and S is a subspace of
Cm of dimension m − t , then A has a generalized inverse X with range R(X) = T and null space N (X) = S if and
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only if

AT ⊕ S = Cm. (2)

In the case when the existence of this outer inverse is ensured, X is unique and it is denoted by A(2)
T ,S , [6].

It is well known that many of the famous inverses such as Moore–Penrose, weighted Moore–Penrose, Drazin, weighted
Drazin, etc. are some special cases of A(2)

T ,S , [7].
The Moore–Penrose inverse is a generalization of the inverse of a nonsingular matrix which plays an important role in

various fields, such as eigenvalue problems and the linear least square problems. The Drazin inverse has been very useful in
Markov chains,multi-body systemdynamics, singular difference and differential equations, differential–algebraic equations
and numerical analysis [8].

Here we remark that there are many current and related references, some of which are interesting and beneficial to our
paper in what follows: computing Moore–Penrose inverses of matrices by high-order Schulz-type iterations [5], computing
the group inverses of singular Toeplitzmatrices by hyperpower algorithm [9], approximating outer generalized inverse [10],
Drazin inverse [11].

The explicit expression for A(2)
T ,S cannot be directly used in some practical problems. Hence, various numerical solution

methods are developed, such as the one in [9]. Note that the validity of these iterative methods is guaranteed under milder
conditions.

The hyperpower iteration method of order p [12] can be defined by

Xk+1 = Xk(I + Rk + · · · + Rp−1
k ), Rk = I − AXk. (3)

This iteration requires pmmm to achieve pth order of convergence. Choosing p = 2 yields to the Schulzmatrix iteration [13]

Xk+1 = Xk(2I − AXk), (4)

with quadratic convergence, while choosing p = 3 results in the following cubically convergent method [14]

Xk+1 = Xk(3I − AXk(3I − AXk)). (5)

In such fixed-point-type methods, the initial matrix must be chosen in the form X0 = αG, where α is an appropriate real
parameter and G is a matrix of dimensions n × m and of rank s, 0 < s ≤ r = rank(A) [8].

The following sections uncover the material in what follows. In Section 2, we consider the high-order scheme of
hyperpower for the case p = 30. We remark that several results for lower values of p have been published in the literature
(see e.g. [15,16] and the references therein). Then, we improve its efficiency index by proper factorization. The derived
method is very robustwith higher computational efficiency index. Section 3 presents the numerical behavior of the proposed
formulation on a matrix problem. A conclusion of this paper will be drawn in Section 4.

2. An efficient iteration

Let us first consider the following scheme extracted from (3) for p = 30

Xk+1 = Xk(I + Rk + R2
k + · · · + R29

k ). (6)

The iteration (6) possesses

EI = 30
1
30 ≈ 1.1200, (7)

as its computational efficiency index which is terrible. This shows that (6) may not be a challenging iterative method in
practice. Here our main goal is to propose a variant of (6) which is much more reliable in case of computational efficiency.

To this end, we should start simplifying (6) by proper matrix factorizing. Doing such a procedure lead us to the following
variant

Xk+1 = Xk(I + Rk)(I + R2
k + R4

k)(I + (R2
k + R8

k)(R
4
k + R16

k )), (8)

where only nine mmm are required, so that the efficiency index is equal to

EI = 30
1
9 ≈ 1.4592. (9)

Now we are able to establish the rate of convergence for (8) in what follows.

Theorem 2.1. Let A ∈ Cm×n
r be a given matrix of rank r and G ∈ Cn×m

s be a given matrix of rank 0 < s ≤ r, which satisfy
rank(GA) = rank(G). Then, the sequence {Xk}

k=∞

k=0 defined by the iterative method (8) converges to A(2)
R(G),N(G) with 30th-order if

the initial approximation X0 = αG satisfies

∥F0∥ = ∥AA(2)
T ,S − AX0∥ < 1. (10)
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