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a b s t r a c t

In this paper, we consider a backward space-fractional diffusion problem. We propose an
a posteriori parameter choice rule for the regularization method given in Zheng and Wei
(2010), where the authors proposed a regularization method called convolution regular-
ization method, and gave an a priori parameter choice strategy. In this paper, we study the
same problem but give a new a posteriori parameter choice based on a modified version of
the discrepancy principle, and obtain a log-type error estimate under an additional source
condition. Numerical results show that our method is feasible.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following backward space-fractional diffusion problem

ut(x, t) = xDαθ (x, t), x ∈ R, t ∈ (0, T ), (1.1)

u(x, T ) = f (x), x ∈ R, u(x, t)|x→±∞ = 0, (1.2)

where the space-fractional derivative xDαθ (x, t) is the Riesz–Feller fractional derivative of orderα (0 < α ≤ 2) and skewness
θ(|θ | ≤ min(α, 2 − α), θ ≠ ±1)which is defined in terms of the Fourier transform in [1], i.e.

F

xDαθ f (x);ω


= −ψα

θ (ω)f̂ (ω), (1.3)

where ψα
θ (ω) = |ω|

αei(signω)θπ/2.
This problem is taken from [2], where the authors proposed a regularization scheme using convolution, and gave an a

priori choice of parameter. The special case for order α = 2 and skewness θ = 0 in (1.1) i.e. the classical backward heat
conduction problem has been considered bymany authors, for example, [3–5]. Fractional calculus and fractional differential
equations have been used recently to describe a range of problems in physics, chemistry, biology, mechanical engineering,
signal processing and system identification, electricity, control theory, finance and fractional dynamics, refer to [6,7] etc.

Fractional differential equations with Riesz–Feller space-fractional derivative can be derived from the continuous-time
random walk in statistical mechanics and have a wide range of applications in the theorem of probability distribution,
especially modeling for the high frequency price dynamics in financial markets [8–10].

In general, the error estimate under an a posteriori parameter choice is hard to obtain, but it has practical applications,
thus it is very valuable. There are many researchers considering the error estimate under an a posteriori parameter choice.
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Neubauer, in 1988, gave an a posterioriparameter choice strategy for the Tikhonov regularization in the presence ofmodeling
error in [11]. In the same year, Engl and Gfrerer [12] extended the a posteriori parameter choice to general regularization
methods for solving linear ill-posed problems. In 1999, a discrepancy-based a posteriori parameter choice strategy for the
Tikhonov regularization of nonlinear ill-posed problems was considered in [13]. In 1999, Hämarik and Raus [14] thought
about an a posteriori parameter choice using the iterated Tikhonov regularization method.

Themost widely usedmethod for the a posteriori parameter choice is the discrepancy principle, whichwewill also use in
this paper. The development of the discrepancy principle has been explored widely. Some researchers used the discrepancy
principle to solve different problems. George et al. in [15] used it to select the regularization parameter for the simplified
regularization method. Blanchard and Mathé in [16] considered it for statistical inverse problems with application to con-
jugate gradient iteration. In [17], Engl proved that the Tikhonov regularization with the discrepancy principle leads to an
optimal convergence rate. In [18], Nair et al. gave a unified conclusion under general source conditions and they provided an
order optimal error bound in 2003. Anzengruber and Ramlau used it for Tikhonov-type functionals with nonlinear operators
in 2010 in [19]. In this paper, in order to get a nice convergence rate, we use a new and generalized discrepancy principle to
choose the regularization parameter, which is different from Morozov’s discrepancy principle used in [18,20–23], and also
distinct from variations of Morozov’s discrepancy principle in [24–27]. Numerical examples show that our new discrepancy
principle is effective.

The structure of the paper is as follows. In Section 2, we introduce the convolution regularization method. In Section 3,
we propose an a posteriori parameter choice rule based onMorozov’s discrepancy principle, andwe obtain an error estimate
for the convolution method. Numerical results are shown in Section 4. At last we give a conclusion in Section 5.

2. The convolution regularization method

In this section, we review the convolution regularization method given in [2].
For g(x) ∈ L2(R), denote ĝ(ω) as its Fourier transform, defined by

ĝ(ω) =
1

√
2π


R
eiωxg(x)dx. (2.1)

Let ∥ · ∥ denote the norm in L2(R). The Parseval formula is

∥g∥ = ∥ĝ∥. (2.2)
Taking the Fourier transform to the space-fractional diffusion equation with respect to the variable x ∈ R, we have

F (xDαθ f (x)) = −ψα
θ (ω)f̂ (ω). (2.3)

Consequently the problem (1.1)–(1.2) in frequency domain can be written as

ût(ω, t) = −ψα
θ (ω)û(ω, t), (2.4)

û(ω, T ) = f̂ (ω). (2.5)
The solution for problem (2.4)–(2.5) can be easily given by

û(ω, t) = eψ
α
θ (ω)(T−t) f̂ (ω). (2.6)

It follows that,

û(ω, 0) = eψ
α
θ (ω)T f̂ (ω). (2.7)

Firstly we rewrite problem (2.6) as the following linear equation:

K̂ û(ω, t) = f̂ , (2.8)

where K̂ û(ω, t) = e−ψαθ (ω)(T−t)û(ω, t)with K̂ = e−ψαθ (ω)(T−t).
We assume that the measured data f δ satisfies

∥f δ − f ∥ = ∥f̂ δ − f̂ ∥ ≤ δ, (2.9)
where the constant δ > 0 is called a noise level.

Then we define L = (K̂ ∗K̂)−
T

T−t = e2 Reψαθ (ω)T , where K̂ ∗ is the adjoint of K̂ .
Let us describe an a priori information for u(x, t) in more detail. We introduce a Hilbert scale (Xr)r∈R+ according to X0 =

L2(R) and Xr = D(L
r
2 ) ⊆ L2(R)where

∥v∥r ,

L r
2 v̂

 , r ∈ R+, (2.10)

is the norm in Xr (see [28]). The a priori smoothness condition for the unknown initial value u(x, 0) is assumed
u(x, 0) ∈ Mr,E = {v ∈ Xr , ∥v∥r ≤ E}, (2.11)

for some 0 ≤ r ≤ 1.



Download	English	Version:

https://daneshyari.com/en/article/4638649

Download	Persian	Version:

https://daneshyari.com/article/4638649

Daneshyari.com

https://daneshyari.com/en/article/4638649
https://daneshyari.com/article/4638649
https://daneshyari.com/

