Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/cam)

Journal of Computational and Applied **Mathematics**

journal homepage: www.elsevier.com/locate/cam

ML(*n*)BiCGStabt: A ML(*n*)BiCGStab variant with **A**-transpose

Man-Chung Yeung

Department 3036, 1000 East University Avenue, Laramie, WY 82071, United States

a r t i c l e i n f o

Article history: Received 18 January 2013 Received in revised form 27 January 2014

MSC: primary 65F10 65F15 secondary 65F25 65F30

Keywords: IDR CGS **BiCGStab** ML(*n*)BiCGStab Multiple starting Lanczos Krylov subspace

1. Introduction

ML(*n*)BiCGStab is a transpose-free Krylov subspace method for the solution of linear systems

 $Ax = b$ (1.1)

where $A \in \mathbb{C}^{N \times N}$ and $b \in \mathbb{C}^N$. It was introduced by Yeung and Chan [\[1\]](#page--1-1) in 1999 and its algorithms were recently reformulated by Yeung [\[2\]](#page--1-2). ML(*n*)BiCGStab is a natural generalization of BiCGStab [\[3\]](#page--1-3), built from a multiple starting BiCG-like algorithm called ML(*n*)BiCG, through the Sonneveld–van der Vorst–Lanczos procedure (SVLP), namely, the procedure introduced by Sonneveld [\[4\]](#page--1-4) and van der Vorst [\[3\]](#page--1-3) to construct CGS and BiCGStab from BiCG [\[5\]](#page--1-5). In theory, ML(*n*)BiCGStab is a method that lies between the Lanczos-based BiCGStab and the Arnoldi-based GMRES/FOM [\[6\]](#page--1-6). In fact, it is a BiCGStab when $n = 1$ and becomes a GMRES/FOM when $n = N$ (see [\[2](#page--1-2)[,7\]](#page--1-7)). In computation, ML(*n*)BiCGStab can be much more stable and converge much faster than BiCGStab. We once tested it on the standard oil reservoir simulation test data called SPE9 which contains a sequence of linear systems and found that it reduced the total computational time by 60% when compared to BiCGStab. Tests made on the data from matrix markets also supported the superiority of ML(*n*)BiCGStab over BiCGStab. For details, one is referred to [\[2,](#page--1-2)[1\]](#page--1-1).

The author once constructed a new version of ML(*n*)BiCG where the left residuals are not just given by the monomial basis, but are orthogonalized against previous right-hand side residuals. In structure, this new ML(*n*)BiCG is closer to the classical BiCG than the one in [\[1\]](#page--1-1) is. Numerical experiments, however, showed that this new ML(*n*)BiCG was unstable and weaker than the standard BiCG. Moreover, in [\[8\]](#page--1-8), Yeung and Boley derived a SVLP from a one-sided multiple starting band Lanczos procedure (MSLP) with *n* left-starting and *m* right-starting vectors. From their experiments about the multi-input

<http://dx.doi.org/10.1016/j.cam.2014.04.011> 0377-0427/© 2014 Elsevier B.V. All rights reserved.

a b s t r a c t

The 1980 IDR method (Wesseling and Sonneveld, 1980 [\[12\]](#page--1-0)) plays an important role in the history of Krylov subspace methods. It started the research of transpose-free Krylov subspace methods. The ML(*n*)BiCGStab method (Yeung, 2012) is one of such methods. In this paper, we present a new ML(*n*)BiCGStab variant that involves **A**-transpose in its implementation. Comparison of this new algorithm with the existing ML(*n*)BiCGStab algorithms and some other Krylov subspace algorithms will be presented.

© 2014 Elsevier B.V. All rights reserved.

E-mail address: [myeung@uwyo.edu.](mailto:myeung@uwyo.edu)

multi-output time-invariant linear dynamical systems, they observed that SVLP is more stable than the both-sided MSLP when $m \neq n$. These two comparing examples hint that, when $m \neq n$, a stable multiple starting procedure with **A**-transpose may come from a modification of a SVLP. In this paper, we make a first attempt in this direction by introducing **A**-transpose into ML(*n*)BiCGStab. We call the resulting algorithm ML(*n*)BiCGStabt [\[7](#page--1-7)[,9\]](#page--1-9), standing for ML(*n*)BiCGStab with transpose. We remark that A^H has been used in [\[10\]](#page--1-10) to improve the parallelism of GPBiCG(*m*, *l*) [\[11\]](#page--1-11). Here we want to use A^H to enhance the numerical stability of ML(*n*)BiCGStab.

There exist two ML(*n*)BiCGStab algorithms, labeled as Algorithms 4.1 and 5.1 respectively in [\[2\]](#page--1-2), derived from different definitions of the residual vectors **r***k*. While both algorithms are numerically stable in general, one is relatively more stable than the other. ML(*n*)BiCGStabt is a modified version of Algorithm 5.1 so that it enjoys the same level of stability with Algorithm 4.1.

Other extensions of IDR [\[12\]](#page--1-0), CGS and BiCGStab exist. Among them are BiCGStab2 [\[13\]](#page--1-12), BiCGStab(*l*) [\[14\]](#page--1-13), GPBi-CG [\[15\]](#page--1-14), IDR(*s*) [\[16,](#page--1-15)[17\]](#page--1-16), IDRstab [\[18\]](#page--1-17), GPBiCG(*m*, *l*) [\[11\]](#page--1-11), and GBi-CGSTAB(*s*, *l*) [\[19\]](#page--1-18). Related articles include [\[20–23\]](#page--1-19).

The outline of the paper is as follows. In Section [2,](#page-1-0) index functions in [\[8\]](#page--1-8) are introduced. They are helpful in the construction of a ML(*n*)BiCGStab algorithm. In Section [3,](#page-1-1) we present the ML(*n*)BiCG algorithm from [\[1\]](#page--1-1). The derivation of every ML(*n*)BiCGStab algorithm is based on it. In Section [4,](#page--1-20) we introduce the ML(*n*)BiCGStabt algorithm and its properties. In Section [5,](#page--1-21) numerical experiments are presented, and in Section [6,](#page--1-22) concluding remarks are given.

2. Index functions

Let be given a $n \in \mathbb{N}$, the set of positive integers. For all $k \in \mathbb{Z}$, the set of all integers, we define

$$
g_n(k) = \lfloor (k-1)/n \rfloor \quad \text{and} \quad r_n(k) = k - n g_n(k)
$$

where $\lfloor \cdot \rfloor$ rounds its argument to the nearest integer towards minus infinity. We call g_n and r_n index functions; they are defined on $\mathbb Z$ with ranges $\mathbb Z$ and $\{1, 2, \ldots, n\}$, respectively. If we write

$$
k = jn + i \tag{2.1}
$$

with $1 \leq i \leq n$ and $j \in \mathbb{Z}$, then

$$
g_n(jn+i) = j
$$
 and $r_n(jn+i) = i$.

3. ML(*n***)BiCG**

Analogously to the derivation of BiCGStab from BiCG, the ML(*n*)BiCGStab algorithms [\[2\]](#page--1-2) were derived from a BiCG-like algorithm named ML(*n*)BiCG, which was built upon a one-sided band Lanczos process with *n* left starting vectors and a single right starting vector. In this section, we present the ML(*n*)BiCG algorithm from [\[1\]](#page--1-1).

Consider the solution of [\(1.1\).](#page-0-0) Throughout the paper we do not assume the coefficient matrix **A** is nonsingular. In [\[2\]](#page--1-2), we proved that ML(*n*)BiCG/ML(*n*)BiCGStab can solve a singular system almost surely provided that the underlying Krylov subspace contains a solution of [\(1.1\).](#page-0-0)

Let be given n vectors $\bm{q}_1,\ldots,\bm{q}_n\in\mathbb{C}^N$, which we call *left starting vectors* or *shadow vectors*. Define

$$
\mathbf{p}_k = \left(\mathbf{A}^H\right)^{g_n(k)} \mathbf{q}_{r_n(k)}, \quad k \in \mathbb{N}.\tag{3.1}
$$

The following algorithm for the solution of (1.1) is from $[1]$.

Algorithm 3.1. ML(*n*)BiCG

- 1. Choose an initial guess $\widehat{\mathbf{x}}_0$ and *n* vectors $\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_n$.
- 2. Compute $\hat{\mathbf{r}}_0 = \mathbf{b} \mathbf{A}\hat{\mathbf{x}}_0$ and set $\mathbf{p}_1 = \mathbf{q}_1, \hat{\mathbf{g}}_0 = \hat{\mathbf{r}}_0$. 3. For $k = 1, 2, \ldots$, until convergence: 4. $\alpha_k = \mathbf{p}_k^H \hat{\mathbf{r}}_{k-1} / \mathbf{p}_k^H \hat{\mathbf{q}}_{k-1};$
5 $\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_{k-1} + \alpha_k \hat{\mathbf{q}}_{k-1};$ 5. $\widehat{\mathbf{x}}_k = \widehat{\mathbf{x}}_{k-1} + \alpha_k \widehat{\mathbf{g}}_{k-1};$
6 $\widehat{\mathbf{r}}_k = \widehat{\mathbf{r}}_{k-1} = \alpha_k \widehat{\mathbf{g}}_{k-1};$ 6. $\widehat{\mathbf{r}}_k = \widehat{\mathbf{r}}_{k-1} - \alpha_k \widehat{\mathbf{A}} \widehat{\mathbf{g}}_{k-1};$
7. For $s = \max(k - n, 0)$ $For s = max(k - n, 0), ..., k - 1$ 8. $\beta_s^{(k)} = -\mathbf{p}_{s+1}^H \mathbf{A} \left(\hat{\mathbf{r}}_k + \sum_{t=\max(k-n,0)}^{s-1} \beta_t^{(k)} \hat{\mathbf{g}}_t \right) / \mathbf{p}_{s+1}^H \mathbf{A} \hat{\mathbf{g}}_s$; 9. End 10. **g**_{*k*} = $\hat{\mathbf{r}}_k$ + $\sum_{s=\max(k-n,0)}^{k-1} \beta_s^{(k)} \hat{\mathbf{g}}_s$;
11. Compute **p**_{*k*+1} according to (3.1) 12. End

Download English Version:

<https://daneshyari.com/en/article/4638663>

Download Persian Version:

<https://daneshyari.com/article/4638663>

[Daneshyari.com](https://daneshyari.com)