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a b s t r a c t

The 1980 IDRmethod (Wesseling and Sonneveld, 1980 [12]) plays an important role in the
history of Krylov subspace methods. It started the research of transpose-free Krylov sub-
space methods. The ML(n)BiCGStab method (Yeung, 2012) is one of such methods. In this
paper, we present a newML(n)BiCGStab variant that involvesA-transpose in its implemen-
tation. Comparison of this new algorithm with the existing ML(n)BiCGStab algorithms and
some other Krylov subspace algorithms will be presented.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

ML(n)BiCGStab is a transpose-free Krylov subspace method for the solution of linear systems

Ax = b (1.1)

where A ∈ CN×N and b ∈ CN . It was introduced by Yeung and Chan [1] in 1999 and its algorithms were recently refor-
mulated by Yeung [2]. ML(n)BiCGStab is a natural generalization of BiCGStab [3], built from a multiple starting BiCG-like
algorithm called ML(n)BiCG, through the Sonneveld–van der Vorst–Lanczos procedure (SVLP), namely, the procedure intro-
duced by Sonneveld [4] and van der Vorst [3] to construct CGS and BiCGStab from BiCG [5]. In theory, ML(n)BiCGStab is a
method that lies between the Lanczos-based BiCGStab and the Arnoldi-based GMRES/FOM [6]. In fact, it is a BiCGStab when
n = 1 and becomes a GMRES/FOM when n = N (see [2,7]). In computation, ML(n)BiCGStab can be much more stable and
converge much faster than BiCGStab. We once tested it on the standard oil reservoir simulation test data called SPE9 which
contains a sequence of linear systems and found that it reduced the total computational time by 60% when compared to
BiCGStab. Tests made on the data from matrix markets also supported the superiority of ML(n)BiCGStab over BiCGStab. For
details, one is referred to [2,1].

The author once constructed a new version of ML(n)BiCG where the left residuals are not just given by the monomial
basis, but are orthogonalized against previous right-hand side residuals. In structure, this new ML(n)BiCG is closer to the
classical BiCG than the one in [1] is. Numerical experiments, however, showed that this new ML(n)BiCG was unstable and
weaker than the standard BiCG. Moreover, in [8], Yeung and Boley derived a SVLP from a one-sided multiple starting band
Lanczos procedure (MSLP) with n left-starting and m right-starting vectors. From their experiments about the multi-input
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multi-output time-invariant linear dynamical systems, they observed that SVLP is more stable than the both-sided MSLP
whenm ≠ n. These two comparing examples hint that, whenm ≠ n, a stable multiple starting procedure with A-transpose
may come from a modification of a SVLP. In this paper, we make a first attempt in this direction by introducing A-transpose
into ML(n)BiCGStab. We call the resulting algorithm ML(n)BiCGStabt [7,9], standing for ML(n)BiCGStab with transpose. We
remark that AH has been used in [10] to improve the parallelism of GPBiCG(m, l) [11]. Here we want to use AH to enhance
the numerical stability of ML(n)BiCGStab.

There exist two ML(n)BiCGStab algorithms, labeled as Algorithms 4.1 and 5.1 respectively in [2], derived from different
definitions of the residual vectors rk. While both algorithms are numerically stable in general, one is relatively more sta-
ble than the other. ML(n)BiCGStabt is a modified version of Algorithm 5.1 so that it enjoys the same level of stability with
Algorithm 4.1.

Other extensions of IDR [12], CGS and BiCGStab exist. Among them are BiCGStab2 [13], BiCGStab(l) [14], GPBi-CG [15],
IDR(s) [16,17], IDRstab [18], GPBiCG(m, l) [11], and GBi-CGSTAB(s, l) [19]. Related articles include [20–23].

The outline of the paper is as follows. In Section 2, index functions in [8] are introduced. They are helpful in the con-
struction of a ML(n)BiCGStab algorithm. In Section 3, we present the ML(n)BiCG algorithm from [1]. The derivation of every
ML(n)BiCGStab algorithm is based on it. In Section 4, we introduce the ML(n)BiCGStabt algorithm and its properties. In
Section 5, numerical experiments are presented, and in Section 6, concluding remarks are given.

2. Index functions

Let be given a n ∈ N, the set of positive integers. For all k ∈ Z, the set of all integers, we define

gn(k) = ⌊(k − 1)/n⌋ and rn(k) = k − ngn(k)

where ⌊ · ⌋ rounds its argument to the nearest integer towards minus infinity. We call gn and rn index functions; they are
defined on Z with ranges Z and {1, 2, . . . , n}, respectively.

If we write

k = jn + i (2.1)

with 1 ≤ i ≤ n and j ∈ Z, then

gn(jn + i) = j and rn(jn + i) = i.

3. ML(n)BiCG

Analogously to the derivation of BiCGStab from BiCG, the ML(n)BiCGStab algorithms [2] were derived from a BiCG-like
algorithmnamedML(n)BiCG,whichwas built upon a one-sided band Lanczos processwith n left starting vectors and a single
right starting vector. In this section, we present the ML(n)BiCG algorithm from [1].

Consider the solution of (1.1). Throughout the paper we do not assume the coefficient matrix A is nonsingular. In [2],
we proved that ML(n)BiCG/ML(n)BiCGStab can solve a singular system almost surely provided that the underlying Krylov
subspace contains a solution of (1.1).

Let be given n vectors q1, . . . , qn ∈ CN , which we call left starting vectors or shadow vectors. Define

pk =

AHgn(k) qrn(k), k ∈ N. (3.1)

The following algorithm for the solution of (1.1) is from [1].

Algorithm 3.1. ML(n)BiCG

1. Choose an initial guessx0 and n vectors q1, q2, . . . , qn.
2. Computer0 = b − Ax0 and set p1 = q1,g0 =r0.
3. For k = 1, 2, . . . , until convergence:
4. αk = pH

krk−1/pH
k Agk−1;

5. xk =xk−1 + αkgk−1;
6. rk =rk−1 − αkAgk−1;
7. For s = max(k − n, 0), . . . , k − 1
8. β

(k)
s = −pH

s+1A
rk +

s−1
t=max(k−n,0) β

(k)
t gt


pH
s+1Ags;

9. End
10. gk =rk +

k−1
s=max(k−n,0) β

(k)
s gs;

11. Compute pk+1 according to (3.1)
12. End
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