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a b s t r a c t

In this paper, an efficient numericalmethod is developed for solving theVolterra–Fredholm
integral equations by least squares approximationmethod, which is based on a polynomial
of degree n to compute an approximation to the solution of Volterra–Fredholm integral
equations. The convergence analysis of the approximation solution relative to the exact
solution of the integral equation is proved. The reliability and efficiency of the proposed
method are demonstrated by some numerical experiments.
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1. Introduction

Integral equation has been one of the principal tools in various areas of applied mathematics, physics and engineering,
hence, the literature on integral equations and their applications is vast. For example, see [1–4] and the references therein.
In this paper, we consider a class of mixed Volterra–Fredholm integral equations of the form

A(x)y(x) + B(x)y(h(x)) = f (x) + λ1

 h(x)

a
k1(x, t)y(t)dt + λ2

 b

a
k2(x, t)y(h(t))dt, (1.1)

where the functions k1(x, t), k2(x, t), A(x), B(x), h(x) and f (x) are known on the interval [a, b], and a, b are constants, y(x)
is the continuous function to be determined, λi ∈ R (i = 1, 2) and λ2

1 + λ2
2 ≠ 0. In particular, when h(x) is a first-order

polynomial, Eq. (1.1) is reduced to a functional integral equationwith proportional delay. As in [5,6], by using thewell-known
Banach fixed-point theorem, one can easily prove that the solution of (1.1) exists and is unique on [a, b].

Numerical methods for solving integral equations have been studied extensively in the literature, see [7] for details. A
squared reminder minimization method for the solution of multi-pantograph equation was first introduced by Bota and
Cǎruntu in [8], and this method was developed in [9]. Best square approximation method was used for solving a mixed
linear Volterra–Fredholm integral equation by Chen and Jiang [10]. Similarly, numerical methods such as the Taylor poly-
nomial method was introduced in [11,12], the Taylor collocation method was presented in [13,14] and implementations
of such methods for the Volterra–Fredholm integral (integro-differential) equations, nonlinear Schrödinger equation, and
high-order linear pantograph equations, respectively.
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In this study, we are concerned with the application of least squares approximation method to the numerical solution
of Volterra–Fredholm integral equations, which is based on a polynomial of degree n to compute an approximation to the
solution of Volterra–Fredholm integral equations. The basic ideas of the previous works [8–10] are developed and applied to
(1.1). Also, we will compare the error of the approximate solution with the exact solution of the Volterra–Fredholm integral
equations by our method and those methods in [4,11–14].

2. Method of solution

Throughout of this paper, we always assume that the functions A(x), B(x) and ki (i = 1, 2) satisfy some conditions such
that the solution of (1.1) exists and is unique. Now we study the least squares approximation method to approximate the
solution of Eq. (1.1). Firstly, we define the operator:

T (x, y(x)) = A(x)y(x) + B(x)y(h(x)) − f (x) − λ1

 h(x)

a
k1(x, t)y(t)dt − λ2

 b

a
k2(x, t)y(h(t))dt. (2.1)

For positive integer n > 0, suppose ϕ0(x), ϕ1(x), . . . , ϕn(x) are linearly independent functions on the interval [a, b], Φn =

span{ϕ0(x), ϕ1(x), . . . , ϕn(x)} is generated by the linear space. Let yn(x) ∈ Φn, there exist numbers c0, c1, . . . , cn such that

yn(x) =

n
i=0

ciϕi(x). (2.2)

Substituting (2.2) into Eq. (1.1), we can obtain the expression:

T (x, yn(x)) = A(x)yn(x) + B(x)yn(h(x)) − f (x) − λ1

 h(x)

a
k1(x, t)yn(t)dt − λ2

 b

a
k2(x, t)yn(h(t))dt

=

n
i=0

ci ·

A(x)ϕi(x) + B(x)ϕi(h(x)) − λ1

 h(x)

a
k1(x, t)ϕi(t)dt − λ2

 b

a
k2(x, t)ϕi(h(t))dt


− f (x)

=

n
i=0

ci · αi(x) − f (x), (2.3)

where αi(x) = A(x)ϕi(x) + B(x)ϕi(h(x)) − λ1
 h(x)
a k1(x, t)ϕi(t)dt − λ2

 b
a k2(x, t)ϕi(h(t))dt , i = 0, 1, . . . , n.

For any x ∈ [a, b], Rn(x) = T (x, yn(x)) − T (x, y(x)) is called the n-order remaining items of Eq. (1.1), where

Rn(x) = A(x)(yn(x) − y(x)) + B(x)(yn(h(x)) − y(h(x))) − λ1

 h(x)

a
k1(x, t)(yn(t) − y(t))dt

− λ2

 b

a
k2(x, t)(yn(h(t)) − y(h(t)))dt.

Remark 2.1. If Rn(x) = 0, then y(x) = yn(x); if limn→∞ Rn(x) = 0, then limn→∞ yn(x) = y(x).

Remark 2.2. For any x ∈ [a, b], if Rn(x) ≡ 0, then yn(x) is an exact solution of Eq. (1.1); if limn→∞ Rn(x) = 0, then yn(x)
converges to the exact solution of Eq. (1.1).

In the following, let

I = I(c0, c1, . . . , cn) =

 b

a
T 2(x, yn(x))dx. (2.4)

The problem is to find real coefficients c0, c1, . . . , cn that will minimize I . A necessary condition for the numbers
c0, c1, . . . , cn to minimize I is that

∂ I
∂ci

= 0,

for each i = 0, 1, . . . , n. By the relation (2.4), we can easily get

∂ I
∂ci

= 2
 b

a
T (x, yn(x))

∂T (x, yn(x))
∂ci

dx

= 2
 b

a


n

j=0


A(x)ϕj(x) + B(x)ϕj(h(x)) − λ1

 h(x)

a
k1(x, t)ϕj(t)dt − λ2

 b

a
k2(x, t)ϕj(h(t))dt


· cj − f (x)
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