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a b s t r a c t

This paper deals with a monotone alternating direction (ADI) scheme for solving nonlinear
singularly perturbed parabolic problems. Monotone sequences, based on the method of
upper and lower solutions, are constructed for a nonlinear difference scheme which
approximates thenonlinear parabolic problem. Themonotone sequences possess quadratic
convergence rate. An analysis of uniform convergence of the monotone ADI scheme to
the solutions of the nonlinear difference scheme and to the continuous problem is given.
Numerical experiments are presented.
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1. Introduction

In this paper we give a numerical treatment for the nonlinear singularly perturbed parabolic problem in the form

ut − Lu + f (x, y, t, u) = 0, Lu ≡ µ2(uxx + uyy), (1)
(x, y, t) ∈ Q = ω × (0, T ], ω = {0 < x < 1} × {0 < y < 1} ,
u(x, y, t) = 0, (x, y, t) ∈ ∂ω × (0, T ],

u(x, y, 0) = ψ(x, y), (x, y) ∈ ω,

whereµ is a small positive parameter, ∂ω is the boundary ofω, the functions f andψ are smooth in their respective domains,
and f satisfies the constraint

fu ≥ β, (x, y, t, u) ∈ ω × [0, T ] × (−∞,∞), (2)
where β = const > 0. This assumption can always be obtained via a change of variables. Indeed, introduce z(x, y, t) =

e−λtu(x, y, t), where λ is a constant. Now, z(x, y, t) satisfies (1) with ϕ = λz + e−λt f (x, y, t, eλtz), instead of f , and we have
ϕz = λ+ fu. Thus, if λ ≥ −min fu + β , where minimum is taking over the domain from (2), we conclude ϕz ≥ β .

For µ ≪ 1, the problem is singularly perturbed and characterized by boundary layers (regions with rapid change
of solutions) near boundary ∂ω (see [1] for details). Various reaction–diffusion-type problems in chemical, physical and
engineering sciences are described by problem (1).

In the study of numerical methods for nonlinear singularly perturbed problems, the two major points to be developed
are: (i) constructing robust difference schemes (this means that unlike classical schemes, the error does not increase to
infinity, but rather remains bounded, as the small parameter approaches zero); (ii) obtaining reliable and efficient computing
algorithms for solving nonlinear discrete problems.

We shall employ a two-time level implicit scheme for approximating the semilinear problem (1). Alternating direction
implicit (ADI) methods are very efficient methods for solving two or three dimensional parabolic problems. At each
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time-step, the ADI method reduces two or three dimensional problems to a succession of one dimensional problems, and,
usually, one needs only to solve a sequence of tridiagonal systems. In the case of the nonlinear reaction function f in (1), the
corresponding discrete problems become systems of nonlinear algebraic equations.

A fruitful method for solving the nonlinear difference scheme is the method of upper and lower solutions and its
associatedmonotone iterations. Byusingupper and lower solutions as two initial iterations, one can construct twomonotone
sequences which converge monotonically from above and below, respectively, to a solution of the problem. The above
monotone iterative method is well known and has been widely used for continuous and discrete elliptic and parabolic
boundary value problems.Most of publications on this topic involvemonotone iterative schemeswhose rate of convergence
is linear. Accelerated monotone iterative methods for solving discrete parabolic problems are presented in [2–4]. An
advantage of this accelerated approach is that it leads to sequences which converge quadratically.

In [5,6], the ADI method based on the Douglas–Rachford ADI scheme [7] is applied to linear singularly perturbed
reaction–diffusion problems of type (1). This ADI method is shown to be uniformly convergent (robust) with respect to
the small parameter µ on special nonuniform meshes.

In this paper, we construct a nonlinear ADI scheme based on a modification of the Douglas–Rachford ADI scheme [7].
A monotone iterative method with quadratic convergence rate from [2] is in use for solving nonlinear discrete systems.
We consider the case when on each time level a nonlinear difference scheme is solved inexactly, and give an analysis of
convergence of a monotone ADI scheme on the whole interval of integration [0, T ].

The structure of the paper as follows. In Section 2, we introduce a nonlinear difference scheme for the numerical solution
of (1), (2). In Section 3, we construct a nonlinear ADI scheme. The new monotone ADI scheme is presented in Section 4.
Monotone properties of the ADI scheme are established. Based on these properties, existence and uniqueness of the solution
to the nonlinear ADI scheme are proved. In Section 5, we show that on each time level the monotone iterative method
possesses quadratic convergence rate. We analyze a convergence rate of the monotone ADI scheme on the whole interval
of integration [0, T ]. Section 6 deals with uniform convergence of the monotone ADI scheme to the nonlinear parabolic
problem (1), (2). Section 7 presents results of numerical experiments.

2. The nonlinear difference scheme

On Q introduce a rectangular mesh ωh
× ωτ , ωh

= ωhx
× ωhy:

ωhx
=

xi, 0 ≤ i ≤ Nx; x0 = 0, xNx = 1; hxi = xi+1 − xi


, (3)

ωhy
=

yj, 0 ≤ j ≤ Ny; y0 = 0, yNy = 1; hyj = yj+1 − yj


,

ωτ =

tk, 0 ≤ k ≤ Nτ ; t0 = 0, tNτ = T ; τk = tk − tk−1


.

For solving (1), consider the nonlinear implicit difference scheme

LU(p, tk)+ f (p, tk,U)− τ−1
k U(p, tk−1) = 0, (p, tk) ∈ ωh

× (ωτ \ {0}), (4)
with the boundary and initial conditions

U(p, tk) = 0, (p, tk) ∈ ∂ωh
× (ωτ \ {0}),

U(p, 0) = ψ(p), p ∈ ωh,

where ∂ωh is the boundary ofωh. When no confusion arises, wewrite f (p, tk,U(p, tk)) = f (p, tk,U). The difference operator
L is defined by

LU(p, tk) = LhU(p, tk)+ τ−1
k U(p, tk),

LhU = Lh
xU + Lh

yU, Lh
νU = −µ2D2

νU, ν = x, y,

where D2
x U and D2

yU are the central difference approximations to the second derivatives
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,
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
, h̄yj = 2−1 hy,j−1 + hyj


, Uk

ij ≡ U

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
.

On each time level tk, k ≥ 1, introduce the linear difference problem

(L + c(p, tk)I)W (p, tk) = Φ(p, tk), p ∈ ωh, (5)
W (p, tk) = g(p, tk), p ∈ ∂ωh,

where I is the identity operator. We are concerned with maximal nodal errors, so we use the norm
∥W (·, tk)∥ωh = max

p∈ωh
|W (p, tk)|.

We now formulate the maximum principle and give an estimate to the solution of (5).
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