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a b s t r a c t

In the paper, the authors elementarily unify and generalize eight identities involving the
functions ±1

e±t−1 and their derivatives. By one of these identities, the authors establish two
explicit formulae for computing Euler polynomials and two-parameter Euler polynomials,
which are a newly introduced notion, in terms of Stirling numbers of the second kind.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In [1], the following eight identities were elementarily and inductively established.

Theorem 1.1. ([1, Theorems 2.1–2.4 and Corollaries 2.1–2.4]) For k ∈ N, we have
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where

λk,m = (−1)k(m − 1)!S(k + 1,m), µk,m = (−1)m−1(m − 1)!S(k + 1,m), (1.5)

ak,m−1 = (−1)m
2
+1Mk−m+1(k,m), bk,m−1 = (−1)k−mak,m−1, (1.6)
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are Stirling numbers of the second kind which may be generated by
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It was pointed out in [1, Remark 5.3] that the above eight identities involving the functions ±1
e±t−1 and their derivatives

are equivalent to each other.
By virtue of the first identity in (1.1), among other things, an explicit formula for computing Bernoulli numbers B2k, which

are defined by the power series expansion
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for |t| < 2π , in terms of Stirling numbers of the second kind S(n, k), was discovered in [1] as follows.

Theorem 1.2 ([1, Theorem 3.1]). For k ∈ N, Bernoulli numbers B2k may be computed by
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In [2], making use of Faà di Bruno’s formula, combinatorial techniques, and much knowledge on Bell polynomials of the
second kind and Stirling numbers of the first and second kinds, the above eight identities were generalized and unified as
follows.

Theorem 1.3 ([2, Theorems 3.1 and 3.2]). For α, λ ∈ R,

(1) when n ∈ N, we have
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