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1. Introduction
In [1], the following eight identities were elementarily and inductively established.

Theorem 1.1. ([1, Theorems 2.1-2.4 and Corollaries 2.1-2.4]) For k € N, we have
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are Stirling numbers of the second kind which may be generated by
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It was pointed out in [1, Remark 5.3] that the above eight identities involving the functions ei%l and their derivatives

are equivalent to each other.
By virtue of the first identity in (1.1), among other things, an explicit formula for computing Bernoulli numbers By, which
are defined by the power series expansion

l’2k

t SN [
_ypl_q_¢ By—— 1.10
et — 1 l; il 2+,; 2 2k (1.10)

for |t| < 27, in terms of Stirling numbers of the second kind S(n, k), was discovered in [1] as follows.

Theorem 1.2 ([1, Theorem 3.1]). For k € N, Bernoulli numbers By, may be computed by
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In [2], making use of Faa di Bruno’s formula, combinatorial techniques, and much knowledge on Bell polynomials of the
second kind and Stirling numbers of the first and second kinds, the above eight identities were generalized and unified as
follows.

(1.11)

Theorem 1.3 ([2, Theorems 3.1 and 3.2]). For o, A € R,

(1) whenn € N, we have
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