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Article history: In inverse eigenvalue problems one tries to reconstruct a matrix, satisfying some con-
Received 29 April 2013 straints, given some spectral information. Here, two inverse eigenvalue problems are
Received in revised form 3 December 2013 solved.

First, given the eigenvalues and the first components of the associated eigenvectors

MSC: (called the weight vector) an extended Hessenberg matrix with prescribed poles is com-
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65F60 tended Hessenberg matrix is retrieved by executing particularly designed unitary similarity
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closely links to orthogonal rational functions: the extended Hessenberg matrix contains the
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inner product. Moreover, it is also sort of the inverse of the (rational) Arnoldi algorithm:
instead of using the (rational) Arnoldi method to compute a Krylov basis to approximate
the spectrum, we will reconstruct the orthogonal Krylov basis given the spectral info.

In the second inverse eigenvalue problem, we do the same, but refrain from unitarity. As
aresult we execute possibly non-unitary similarity transformations on the diagonal matrix
of eigenvalues to retrieve a (non)-symmetric extended tridiagonal matrix. The algorithm
will be less stable, but it will be faster, as the extended tridiagonal matrix admits a low
cost factorization of ©(n) (n equals the number of eigenvalues), whereas the extended
Hessenberg matrix does not. Again there is a close link with orthogonal function theory, the
extended tridiagonal matrix captures the recurrence coefficients of bi-orthogonal rational
functions. Moreover, it is again sort of inverse of the nonsymmetric Lanczos algorithm:
given spectral properties, we reconstruct the two basis Krylov matrices linked to the
nonsymmetric Lanczos algorithm.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this manuscript special instances of the following very general inverse eigenvalue problem are solved.

Definition 1.1 (Inverse Eigenvalue Problem, IEP-general). Given n complex numbers A; and corresponding positive real
weights w;, i = 1, 2, ..., n. Without loss of generality, we will assume that the vector w = [wy, wo, ..., w,] has 2-norm
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equal to 1. Find a matrix M having a certain desired structure such that the eigenvalues of M are A; and such that the first
component of the corresponding unit eigenvector is w;.

This inverse eigenvalue problem computes the recurrence coefficients of orthogonal functions, orthogonal with respect
to adiscrete inner product with the A; as nodes and the |w;|? as weights of the inner product. Solving such inverse eigenvalue
problems, i.e. computing the recurrences and orthogonal functions (stemming from polynomials, Laurent polynomials,
rational functions with finite and/or infinite poles, ...), given nodes and weights of the inner product, is typically done
by plain matrix operations. By similarity transformations, one transforms the diagonal matrix of eigenvalues (see [1,2]) to a
matrix of certain structure. The eigenvalues and eigenvectors link to the nodes and weights of to the inner product, and the
matrix structure connects to the function type and eigenvalue distribution (e.g., Hessenberg vs. plain polynomials, Hermitian
tridiagonal vs. polynomials with real eigenvalues, unitary Hessenberg vs. Szegé polynomials, extended Hessenberg without
poles vs. Laurent polynomials, extended Hessenberg with poles vs. rational functions).

For a survey of methods on inverse eigenvalue problems, we refer to Chu and Golub [1], Boley and Golub [3], and see
also the book of Golub and Meurant [4]. When the structure of the matrix M we are looking for is upper Hessenberg, taking
the A; all on the real line, leads to the symmetry of this Hessenberg matrix. Hence, it becomes tridiagonal and is nothing
else than the Jacobi matrix for the corresponding inner product, i.e., it gives the recurrence coefficients of the corresponding
orthogonal polynomials [5]. The discrete least squares interpretations of these methods are presented by Reichel [6] and
by Elhay, Golub, and Kautsky [7]. These methods efficiently exploit the tridiagonal structure of the matrix representing the
recurrence relations and construct the optimal polynomial fitting in a least squares sense, given the function values in these
real points A;. Based on the inverse unitary QR algorithm for computing unitary Hessenberg matrices [8], Reichel, Ammar,
and Gragg [9] solve the approximation problem when the given function values are taken in points A; on the unit circle. Their
algorithm is based on computational aspects associated with the family of polynomials orthogonal with respect to an inner
product on the unit circle. Such polynomials are known as Szeg6 polynomials. FaBbender [10] presents an approximation
algorithm based on an inverse unitary Hessenberg eigenvalue problem and shows that it is equivalent to computing Szegé
polynomials. More properties of the inverse unitary Hessenberg eigenvalue problem are studied by Ammar and He [11].

A generalization of these ideas to vector orthogonal polynomials and to the least squares problems of a more general
nature is presented by Bultheel and Van Barel in [12-14]. They developed an updating procedure to compute a sequence of
orthonormal polynomial vectors with respect to that inner product where the points A; could lie anywhere in the complex
plane. Again, if the inner products are prescribed in points on the real axis or on the unit circle, they present variants of the
algorithm which are an order of magnitude more efficient. Similarly as in the scalar case, when all A; are real, the generalized
Hessenberg becomes a banded matrix [15,16], and when all A; are on the unit circle, H can be parametrized using block
Schur parameters [17]. Also a downdating procedure was developed [18]. For applications of downdating in data analysis,
the reader can have a look at [19].

So far, we have only considered polynomial functions. When taking proper rational functions with prescribed poles
Yx # 00,k =1, ..., n, the inverse eigenvalue problem becomes

Q"D,Qq =S +D,, (1.1)

where Dy is the diagonal matrix based on the poles y; (with an arbitrary value for y;), and where S has to be lower
semiseparable, i.e., all submatrices that can be taken out of the lower triangular part of S have rank at most 1. Also here,
when all A; are real, S becomes a symmetric semiseparable matrix and when all A; lie on the unit circle, S has to be of lower
as well as upper semiseparable form [20,21].

In this manuscript we will investigate general, not necessarily proper, rational functions. We will investigate the structure
of the matrix that represents the recurrence coefficients for these sequences of orthogonal rational functions.

The techniques described above can be used in several applications in which polynomial or rational functions play
an important role: linear system theory, control theory, system identification [22,23], data fitting [7], (trigonometric)
polynomial least squares approximation [6,9], and so on. For a comprehensive overview of orthogonal rational functions,
the interested reader can consult [24].

The article is organized as follows. There are two main sections, each discussing an inverse eigenvalue problem. Section 3
discusses the inverse eigenvalue problem for extended Hessenberg matrices: given eigenvalues and a vector of weights,
construct via unitary similarity transformations an extended Hessenberg matrix, whose eigenvalues are as defined, and
whose orthogonal eigenvectors have as first components the elements of the weight vector. In Section 4 we tackle an inverse
eigenvalue problem where given two weight vectors and eigenvalues an extended tridiagonal matrix is constructed, whose
eigenvalue decomposition has prescribed eigenvalues and the eigenvectors (not necessarily unitary anymore, but of unit
length) have their first components related to the weight vectors. Both these sections are organized alike. First the Krylov
subspace, whose orthogonal basis we would like to retrieve is presented and the structure of the matrix of recurrences is
deduced. The compact representation of the matrix of recurrences is next presented, and will be used extensively in the
algorithm design which relies heavily on basic 2 x 2 matrix operations. The description of the algorithm itself is subdivided
in smaller parts, clearly distinguishing between finite and infinite poles.

We rely on the following notational conventions. Matrices are written as capitals A; the matrix element positioned on the
intersection of row i and column j is denoted as a;;. Vectors are typeset in bold: v; the standard basis vectors are the e;’s. With
T the transpose is meant; -H stands for the Hermitian conjugate. Standard Matlab notation is used to select submatrices
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