On condition numbers of the spectral projections associated with periodic eigenproblems

Xiao Shan Chen ${ }^{\text {a }}$, Wen Li^{a}, Michael K. Ng ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Mathematics, South China Normal University, Guangzhou, 510631, People's Republic of China
${ }^{\mathrm{b}}$ Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong

ARTICLE INFO

Article history:

Received 11 December 2012
Received in revised form 2 May 2013

MSC:

15A18
65F15

Keywords:

Spectral projection
Periodic eigenproblem
Condition numbers
First order perturbation bound

Abstract

In this paper, we study and analyze absolute and relative condition numbers of the spectral projections for regular periodic eigenproblems. The main contribution is to derive explicit expressions of the condition numbers of the j-th left and right spectral projections. Numerical examples are given to illustrate the proposed condition numbers for the spectral projections associated with periodic eigenproblems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study condition numbers for the spectral projections of the multivariate eigenproblem:

$$
\left(\begin{array}{ccccc}
\alpha_{1} E_{1} & 0 & \cdots & 0 & -\beta_{1} A_{1} \tag{1.1}\\
-\beta_{2} A_{2} & \alpha_{2} E_{2} & & & 0 \\
& \ddots & \ddots & & \vdots \\
& & \ddots & \ddots & 0 \\
0 & \cdots & 0 & -\beta_{p} A_{p} & \alpha_{p} E_{p}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{p}
\end{array}\right) \equiv C\binom{\alpha_{1}, \ldots, \alpha_{p}}{\beta_{1}, \ldots, \beta_{p}}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right)=0,
$$

where $A_{j}, E_{j} \in \mathbb{C}^{n \times n}, \beta_{j}, \alpha_{j}$ are complex variables and $x_{j} \neq 0 \in \mathbb{C}^{n}$ for $j=1, \ldots, p$. The periodic matrix pairs $\left\{\left(A_{j}, E_{j}\right)\right\}_{j=1}^{p}$ are called regular if

$$
\operatorname{det}\left[C\binom{\alpha_{1}, \ldots, \alpha_{p}}{\beta_{1}, \ldots, \beta_{p}}\right] \not \equiv 0
$$

[^0]Let the matrix pairs $\left\{\left(A_{j}, E_{j}\right)\right\}_{j=1}^{p}$ be regular. If there are complex numbers $\alpha_{1}, \ldots, \alpha_{p}, \beta_{1}, \ldots, \beta_{p}$ with $\left(\prod_{j=1}^{p} \alpha_{j}, \prod_{j=1}^{p} \beta_{j}\right) \neq$ $(0,0)$ satisfying

$$
\operatorname{det}\left[C\binom{\alpha_{1}, \ldots, \alpha_{p}}{\beta_{1}, \ldots, \beta_{p}}\right]=0
$$

then we say that $\left(\prod_{j=1}^{p} \alpha_{j}, \prod_{j=1}^{p} \beta_{j}\right)$ is an eigenvalue pair of $\left\{\left(A_{j}, E_{j}\right)\right\}_{j=1}^{p}$. If $\left(\pi_{\alpha}, \pi_{\beta}\right)$ is an eigenvalue pair of $\left\{\left(A_{j}, E_{j}\right)\right\}_{j=1}^{p}$, then $\left(\pi_{\alpha}, \pi_{\beta}\right)$ and ($\tau \pi_{\alpha}, \tau \pi_{\beta}$) represent the same eigenvalue for any nonzero τ. If $\pi_{\beta} \neq 0$ then $\lambda=\pi_{\alpha} / \pi_{\beta}$ is a finite eigenvalue; otherwise $\left(\pi_{\alpha}, 0\right)$ represents an infinite eigenvalue. The set of all eigenvalue pairs of $\left\{\left(A_{j}, E_{j}\right)\right\}_{j=1}^{p}$ is denoted by $\lambda\left(\left\{\left(A_{j}, E_{j}\right)\right\}_{j=1}^{p}\right)$. The detailed discussion of the eigenvalue problem for regular periodic matrix pairs can be found in [1-4].

When $\left\{\left(A_{j}, E_{j}\right)\right\}_{j=1}^{p}$ is regular, there exist unitary matrices $U_{j}, V_{j} \in \mathbb{C}^{n \times n}$ such that $[1,4]$

$$
A_{j}=U_{j}\left(\begin{array}{cc}
A_{11}^{(j)} & A_{12}^{(j)} \tag{1.2}\\
0 & A_{22}^{(j)}
\end{array}\right) V_{j-1}^{*}, \quad E_{j}=U_{j}\left(\begin{array}{cc}
E_{11}^{(j)} & E_{11}^{(j)} \\
0 & E_{22}^{(j)}
\end{array}\right) V_{j}^{*}, \quad j=1, \ldots, p,
$$

where $V_{0}=V_{p}, A_{11}^{(j)}, E_{11}^{(j)} \in \mathbb{C}^{m \times m}(m<n)$, and $\cdot *$ denotes a conjugate transpose of a matrix. Assume $\lambda\left(\left\{\left(A_{11}^{(j)}, E_{11}^{(j)}\right)\right\}_{j=1}^{p}\right) \cap$ $\lambda\left(\left\{\left(A_{22}^{(j)}, E_{22}^{(j)}\right)\right\}_{j=1}^{p}\right)=\emptyset$. Then the following periodic generalized coupled Sylvester equation

$$
\left\{\begin{array}{c}
A_{11}^{(j)} X_{j-1}-Y_{j} A_{22}^{(j)}=-A_{12}^{(j)}, \quad j=1, \ldots, p, \tag{1.3}\\
E_{11}^{(j)} X_{j}-Y_{j} E_{22}^{(j)}=-E_{12}^{(j)},
\end{array} \quad j=1\right.
$$

has a unique solution $\left\{\left(X_{j}, Y_{j}\right)\right\}_{j=1}^{p}$, where $X_{0}=X_{p}$, see [5]. By setting

$$
\begin{array}{ll}
S_{j}=U_{j}\left(\begin{array}{cc}
I_{m} & Y_{j} \\
0 & I_{n-m}
\end{array}\right)=\left(S_{1}^{(j)}, S_{2}^{(j)}\right), & T_{j}=S_{j}^{-1}=\left(\begin{array}{cc}
I_{m} & -Y_{j} \\
0 & I_{n-m}
\end{array}\right) U_{j}^{*}=\binom{T_{1}^{(j)}}{T_{2}^{(j)}}, \tag{1.4}\\
G_{j}=V_{j}\left(\begin{array}{cc}
I_{m} & X_{j} \\
0 & I_{n-m}
\end{array}\right)=\left(G_{1}^{(j)}, G_{2}^{(j)}\right), & H_{j}=G_{j}^{-1}=\left(\begin{array}{cc}
I_{m} & -X_{j} \\
0 & I_{n-m}
\end{array}\right) V_{j}^{*}=\binom{H_{1}^{(j)}}{H_{2}^{(j)}},
\end{array}
$$

where $S_{1}^{(j)}, G_{1}^{(j)} \in \mathbb{C}^{n \times m}$ and $T_{1}^{(j)}, H_{1}^{(j)} \in \mathbb{C}^{m \times n}$, we obtain

$$
A_{j}=S_{j}\left(\begin{array}{cc}
A_{11}^{(j)} & 0 \tag{1.5}\\
0 & A_{22}^{(j)}
\end{array}\right) G_{j-1}^{-1}, \quad E_{j}=S_{j}\left(\begin{array}{cc}
E_{11}^{(j)} & 0 \\
0 & E_{22}^{(j)}
\end{array}\right) G_{j}^{-1}, \quad j=1, \ldots, p .
$$

This means that $\mathscr{R}\left(S_{1}^{(j)}\right)$ and $\mathscr{R}\left(G_{1}^{(j)}\right)$ are the j-th simple left and right periodic deflating subspaces of $\left\{\left(A_{j}, E_{j}\right)\right\}_{j=1}^{p}$ corresponding to $\lambda\left(\left\{\left(A_{11}^{(j)}, E_{11}^{(j)}\right)\right\}_{j=1}^{p}\right)$, see $[4]$. For $j=1, \ldots, p$, the $n \times n$ matrices

$$
P_{l}^{(j)}=S_{j}\left(\begin{array}{cc}
I_{m} & 0 \tag{1.6}\\
0 & 0
\end{array}\right) S_{j}^{-1}, \quad P_{r}^{(j)}=G_{j}\left(\begin{array}{cc}
I_{m} & 0 \\
0 & 0
\end{array}\right) G_{j}^{-1}
$$

are respectively the j-th left and right spectral projections onto the j-th simple right and left deflating subspaces of the periodic matrix pairs $\left\{\left(A_{j}, E_{j}\right)\right\}_{j=1}^{p}$ corresponding to $\lambda\left(\left\{\left(A_{11}^{(j)}, E_{11}^{(j)}\right)\right\}_{j=1}^{p}\right)$.

In the literature, there are many papers studying the perturbation theory and numerical methods of spectral projections (see for example, [3,6-9]). The spectral projections of regular periodic matrix pairs play an important role in computing periodic reachability and observability Gramians [3]. For example, a periodic descriptor system with time-varying dimensions:

$$
E_{j} x_{j+1}=A_{j} x_{j}+B_{j} u_{j}, \quad y_{j}=C_{j} x_{j}, \quad j=1, \ldots, p,
$$

where the rectangular matrices A_{j}, E_{j}, B_{j}, and C_{j} are periodic with a period $p \geq 1$, see [3]. Assume that regular periodic matrix pairs $\left\{\left(A_{j}, E_{j}\right)\right\}_{j=1}^{p}$ are stable, that is, all their finite eigenvalues of $\left\{\left(A_{j}, E_{j}\right)\right\}_{j=1}^{p}$ lie inside the unit circle, then the causal reachability Gramians $\left\{G_{j}^{c r}\right\}_{j=1}^{p}$ refer to the unique Hermitian positive semidefinite solution of the following projected generalized discrete-time periodic Lyapunov equations:

$$
E_{j} G_{j+1}^{c r} E_{j}^{T}-A_{j} G_{j}^{c r} A_{j}^{T}=P_{l}^{(j)} B_{j} B_{j}^{*} P_{l}^{(j)^{*}}, \quad G_{j}^{c r}=P_{r}^{(j)} G_{j}^{c r} P_{r}^{(j)^{*}}, \quad j=1, \ldots, p,
$$

where $P_{l}^{(j)}$ and $P_{r}^{(j)}$ are the j-th left and right spectral projections corresponding to the finite eigenvalues of $\left\{\left(A_{j}, E_{j}\right)\right\}_{j=1}^{p}$. For a matrix and a regular matrix pair, Sun [8,9] derived explicit expressions of condition numbers for spectral projections. To the best of our knowledge, similar results have not been developed for periodic eigenproblems. The purpose of this paper is to define the absolute and relative condition numbers of spectral projections onto the j-th left and right deflating subspaces of the regular periodic matrix pairs appropriately, and to derive explicit expressions of these condition numbers.

https://daneshyari.com/en/article/4638689

Download Persian Version:
https://daneshyari.com/article/4638689

Daneshyari.com

[^0]: * Corresponding author. Tel.: +852 34117317.

 E-mail addresses: xschen@scnu.edu.cn (X.S. Chen), liwen@scnu.edu.cn (W. Li), mng@math.hkbu.edu.hk, 11466715@life.hkbu.edu.hk (M.K. Ng).

