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h i g h l i g h t s

• It is shown that structured matrix methods allow multiple roots of a polynomial to be computed reliably.
• A geometric explanation, in terms of pejorative manifolds of a polynomial that has multiple roots, is provided and complements the

numerical method.
• Structured matrix methods are used to perform polynomial deconvolution.
• A comparison of the results from the method described in the paper with the results from the suite of Matlab programs MultRoot is

given.
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a b s t r a c t

This paper considers the application of structured matrix methods for the computation
of multiple roots of a polynomial. In particular, the given polynomial f (y) is formed
by the addition of noise to the coefficients of its exact form f̂ (y), and the noise causes
multiple roots of f̂ (y) to break up into simple roots. It is shown that structured matrix
methods enable the simple roots of f (y) that originate from the same multiple root
of f̂ (y) to be ‘sewn’ together, which therefore allows the multiple roots of f̂ (y) to be
computed. The algorithm that achieves these results involves several greatest common
divisor computations and polynomial deconvolutions, and special care is required for the
implementation of these operations because they are ill-posed. Computational examples
that demonstrate the theory are included, and the results are compared with the results
fromMultRoot, which is a suite ofMatlab programs for the computation ofmultiple roots
of a polynomial.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The computation of the roots of a polynomial is a classical problem in mathematics and many methods have been
developed, including the methods of bisection [1], Laguerre [2,3], Bairstow, Græffe and Müller [4], Horner [5], Jenkins
and Traub [6], and Newton [7]. These methods have advantages and disadvantages with respect to speed, accuracy and
convergence. For example, the methods of Müller and Newton may diverge, and the methods of Horner and Bairstow have
good convergence properties, but all methods yield incorrect results whenmultiple roots are computed because these roots
break up into simple roots. This hasmotivated the development of methods that are explicitly designed for the computation
of multiple roots of a polynomial, that is, methods that do not cause the multiple roots of the polynomial to break up
into simple roots [8–12]. The methods described in these papers require greatest common divisor (GCD) computations and

∗ Tel.: +44 114 222 1834; fax: +44 114 222 1810.
E-mail address: j.winkler@dcs.shef.ac.uk.

0377-0427/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cam.2013.08.032

http://dx.doi.org/10.1016/j.cam.2013.08.032
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2013.08.032&domain=pdf
mailto:j.winkler@dcs.shef.ac.uk
http://dx.doi.org/10.1016/j.cam.2013.08.032


450 J.R. Winkler / Journal of Computational and Applied Mathematics 272 (2014) 449–467

polynomial deconvolutions, and the difficulty of computingmultiple roots of a polynomial follows from the ill-posed nature
of these operations. In particular, if two polynomials f̂ (y) and ĝ(y) have a non-constant GCD, their perturbed forms f (y)
and g(y), respectively, are coprime with probability one (under very mild assumptions). Similarly, even if ĝ(y) is an exact
divisor of f̂ (y), the deconvolution f (y)/g(y) is a rational function and not a polynomial. It therefore follows that special
care is required for the computational implementation of these operations, and it will be shown that structured matrix
methods allow numerically robust solutions to be obtained. This numerical difficulty must be compared with the symbolic
implementation of these operations on f̂ (y) and ĝ(y) using exact arithmetic, which does not present difficulties.

There also exist algorithms for the determination of real roots of a polynomial, for example, Sturm sequences, Descartes’
rule of signs and continued fractions techniques, but these algorithms solve a problem that differs from the problem
considered in this paper. Also, they fail to terminate when multiple roots are considered, unless additional information
is provided.

The method whose implementation is described in this paper is similar to the method considered in [8–10], and it is
based on the method described in [13], pages 65–68. The examples in [8–10] do not consider the effect of added noise, and
thus an exact polynomial is specified and the errors in the computed results are due to roundoff error only. By contrast, the
structuredmatrixmethods used in this work allow the effects of noise to be considered, such thatmultiple roots of the exact
polynomial f̂ (y) are computed, even when an inexact (noisy) form f (y) of f̂ (y),

f (y) = f̂ (y) + δf (y), (1)

is specified, where δf (y) is the noise added to f̂ (y).
The polynomial root solverMultRoot is a suite ofMatlab programs for the computation ofmultiple roots of a polynomial

in the presence of added noise [11,12], but it differs from the work described in this paper because the magnitude of the
noise added to the coefficients of f̂ (y) is required, such that a threshold on the singular values of the Sylvester matrix
of f (y) and its derivative f (1)(y) can be specified. By contrast, knowledge of this noise level is not required for the work
described in this paper, which has practical advantages because the noise level may not be known, or it may only be known
approximately, or the noise level may vary between the coefficients, such that a threshold cannot be specified a priori. In
particular, computational experiments showed that if the signal-to-noise ratio is higher than a specified value, which is a
function of the values and multiplicities of the roots, then the errors in the computed roots are small and knowledge of the
noise level is not required. The dependence of the computed roots on these parameters has been observed by computational
experiments, and not considered analytically, and thus only a qualitative statement, and not a quantitative statement, can be
made. Also, computational experiments showed that the errors in the computed roots decrease as the noise level decreases,
which is expected. If, however, the noise level is known, it can be used to verify the acceptability, or otherwise, of the
computed roots.

The method whose computational implementation is considered in this paper is described in Section 2. This algorithm
is explicitly designed for the computation of multiple roots, and its application to a polynomial, all of whose roots are
simple, does not yield any advantages with respect to themethods discussed above. It is shown in Section 3 that themethod
described in this paper has a geometric interpretation based on the pejorative manifolds of a polynomial that has multiple
roots, and that this allows an easier understanding of its numerical implementation [14]. Structured and unstructured
condition numbers of a multiple root of a polynomial are discussed in Section 4, and it is shown they may differ by several
orders of magnitude. This difference in magnitude provides the motivation for the method that implements the polynomial
root solver described in this paper, and it forms a clear distinction between this root solver and the root solvers reviewed
above.

The method whose implementation is described in this paper requires that polynomial deconvolutions of the form
hi(y) = pi−1(y)/pi(y) be considered. It is clear that the ith and (i + 1)th deconvolutions are coupled, and it is therefore
advantageous to consider these deconvolutions simultaneously, such that the coupling is explicitly included in the
formulation of the problem, rather than consider them as decoupled (independent) deconvolutions. It is shown in Section 5
that structured matrix methods can be used for the computation of these coupled deconvolutions. Section 6 contains
examples of the polynomial root solver described in this paper, and the results are compared with the results obtained
from the polynomial root solverMultRoot. Section 7 contains a summary of the paper.

This paper is a continuation of the work in [15], and it is shown in this paper that:

• Structured matrix methods allow multiple roots of an exact polynomial f̂ (y) to be computed when an inexact form f (y)
of f̂ (y) is given.

• The polynomial root solver used to compute multiple roots of f̂ (y) when f (y) is specified can be interpreted in terms
of the pejorative manifolds of f̂ (y). The equations that define the pejorative manifolds of a third order polynomial are
derived.

• Structured and unstructured condition numbers of a multiple root of a polynomial are considered. It is shown that they
may differ by several orders of magnitude, and that this difference increases as the multiplicity of the root increases.

• A structured matrix method can be used to perform polynomial deconvolution, and it is shown that this method is
better than the method of least squares. Specifically, the structured matrix method returns the coefficients of an exact
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