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• We discuss Lagrange stability for impulsive Cohen–Grossberg neural networks.
• We establish a new delay impulsive differential inequality.
• Some easily verified conditions of Lagrange exponential stability are obtained.
• Giving out the detail estimations of the exponential convergence ball.
• The results here generalize and improve the earlier publications.
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a b s t r a c t

In this paper, the problem on exponential convergence and Lagrange exponential stabil-
ity for a class of delayed Cohen–Grossberg neural networks with impulses effects is
investigated. To this end, a newdelay impulsive differential inequality is established,which
improves and generalizes previously known criteria. By using the new inequality and
coupling with the Lyapunovmethod, several sufficient conditions are derived to guarantee
the global exponential stability in Lagrange sense and exponential convergence of the
state variables of the discussed delayed Cohen–Grossberg neural networks with impulses
effects. Meanwhile, the framework of the exponential convergence ball in the state space
with a pre-specified convergence rate is also given. Here, the existence and uniqueness of
the equilibrium points need not to be considered. Finally, some numerical examples with
simulation show the effectiveness of the obtained results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past decade, Cohen–Grossberg neural networks have been extensively studied and developed due to its potential
applications and its complexity [1,2]. Most widely studied and used neural networks can be classified as either continuous
or discrete. But in practice applications, such as the state of electronic networks is often subject to instantaneous changes
at certain instants, this is impulsive phenomena. Examples of impulsive phenomena can also be founded in other fields of
automatic control system, artificial intelligence, robotics, etc. [3]. Impulsive neural network model belongs to new category
of dynamical systems, which is neither continuous nor discrete ones.

As we know, neural network could be stabilized or destabilized by impulsive phenomena [4,5]. The presence of impulse
means that the state trajectory does not preserve the basic properties. Thus, the theory of impulsive differential equations is
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quite necessary to be further investigated and has attracted the attention ofmany scientists. In [6], Guan et al. introduced im-
pulse into Hopfield type neural networks with delay. Recently, the asymptotical or exponential stability of impulsive neural
networks with delays has been widely studied, and many results on this topic have been proposed in the literature [7,5,8].

On the other hand, in a wide range of these applications, it is essential that the neural networks involved are multistable.
Many research results on multistability of neural networks have been reported by [9–14], these dynamics maybe have
multiple equilibrium and so many of them are unstable [11,12]. In [13,14], the authors considered the multistability for
impulsive hybrid Hopfield neural networks and discrete-time Hopfield neural networks. Motivated by these concerns,
it is worth mentioning that Lagrange stability [15] refers to the stability of the total system which does not require the
information of equilibrium points. From the theoretical and application view, it is necessary to study the stability properties
in Lagrange sense for impulsive Cohen–Grossberg neural networks.

To the best of our knowledge, few researchers study the stability in Lagrange sense for impulsive neural networks
with time-varying delays. In [16], He and Wang applied nonlinear delay differential inequality to consider the attracting
and invariant sets of impulsive delay Cohen–Grossberg neural networks. In [17], the authors proved a new invariance
theorem for a class of special nonlinear impulsive dynamical systems. In this paper, we will establish a new delay impulsive
differential inequality and apply inequality technique to discuss the stability in Lagrange sense and exponential convergence
for impulsive Cohen–Grossberg neural networks with time-varying delays. Moreover, the convergence ball domain of delay
impulsive neural networks are given. It is believed that the results are significant and useful for the applications and design
of impulsive neural networks.

This paper is organized as follows. In Section 2, some assumptions, notations and lemmas are given. In Section 3, we
establish a new delay impulsive differential inequality. Some criteria for Lagrange stability and exponential convergence
are proposed in Section 4. In Section 5, two illustrative examples are given to illustrate the obtained results. Conclusions
will be presented in Section 6.

2. Preliminaries

Based on the model in [6], we consider a class of Cohen–Grossberg neural networks with time-varying delays and
impulses described by the following measure differential equations:

Dxi(t) = −αi(xi(t))


βi(xi(t))−

n
j=1

aijfj(xj(t))DUj −

n
j=1

bijfj(x(t − τ(t)))DWj − Ii


, (1)

where i = 1, 2, . . . , n, n ≥ 2 is the number of neurons in the network, xi(t) denotes the state variable associated with the
neuron, and αi(xi(t)) > 0 represents an amplification function, βi(xi(t)) is an appropriately behaved function. A = (aij)n×n
and B = (bij)n×n are connection weights from neuron i to neuron j; Ii is a constant external input; τ(t) denotes transmission
delay with 0 ≤ τ(t) ≤ τ = sups≥0{τ(s)}. The operator D denotes the distributional derivative, bounded variation functions
Uj,Wj : [t0,+∞) → R are right-continuous on any compact subinterval of [t0,+∞). Activation function fj(·) shows us how
the neurons respond to each other, which is integrable functions with respect to Uj andWj, respectively. DUj,DWj represent
the effect of sudden changes in the states of network (1) at the discontinuity points of Uj and Wj for j = 1, 2, . . . , n. We
assume that

DUj = 1 +

+∞
k=1

ujkδ(t − tk), DWj = 1 +

+∞
k=1

wjkδ(t − tk),

where j = 1, 2, . . . , n. k ∈ N , {1, 2, . . .}, the fixed impulsive moments tk satisfy tk−1 < tk and limk→+∞ tk = +∞, δ(t)
is the Dirac impulsive function, which means that the state of network (1) has jumps at tk for k ∈ N. ujk and wjk represent
the strength of impulsive effects of the jth neuron at time tk and tk − τ(t), respectively. If ujk = wjk = 0, then model (1)
becomes continuous neural network models (see [2,18,19]).

LetC(X, Y ) denotes the space of continuousmappings from the topological space X to the topological space Y . Especially,
C , C([t0 − τ , t0],Rn) denotes the family of all the bounded variation and right-hand continuous Rn-valued functions
ϕ(·) = (ϕ1(·), ϕ2(·), . . . , ϕn(·))

T defined on any compact subinterval of [t0 − τ , t0]. Throughout the paper, we always
assume that for any ϕ = (ϕ1, ϕ2, . . . , ϕn)

T
∈ C neural networks (1) has at least one solution through (t0, ϕ) denoted by

x(t, t0, ϕ) (simply x(t, ϕ) or x(t) if no confusion should occur). For impulsive neural networks (1), its initial conditions are
given by

x(t) = ϕ(t) ∈ C. (2)

For further discussion, some preliminaries are needed:

Assumption (H1). For each i ∈ {1, 2, . . . , n}, the amplification function αi(·) is positive, bounded and satisfies

0 < αi ≤ αi(xi(t)) ≤ αi < +∞, i = 1, 2, . . . , n.

And let α = min{α1, α2, . . . , αn}, α = max{α1, α2, · · · , αn}.
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