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a b s t r a c t

Google uses the PageRank algorithm to determine the relative importance of a website.
Link spamming is the name for putting links betweenwebsites with no other purpose than
to increase the PageRank value of a website. To give a fair result to a search query it is
important to detect whether a website is link spammed so that it can be filtered out of the
search result.

While the dominant eigenvector of the Google matrix determines the PageRank value,
the second eigenvector can be used to detect a certain type of link spamming. We will de-
scribe an efficient algorithm for computing a complete set of independent eigenvectors for
the second eigenvalue, and explain how this algorithm can be used to detect link spam-
ming. We will illustrate the performance of the algorithm on web crawls of millions of
pages.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Google’s PageRank algorithm aims to return the best ranking of websites when searching on the web. The PageRank
model assumes that a web surfer randomly follows one of the outgoing hyperlinks at a given website with a probability p or
jump to a randomwebsite with probability 1−p. Mathematically this can bemodeled by aMarkov chain. The PageRank of a
website is the probability to be on thiswebsite in the stationary distribution of theMarkov chain. This stationary distribution
is given by the first eigenvector of the transition matrix of the Markov chain.

According to Haveliwala and Kamvar [1] the eigenvectors for the second eigenvalue are also of importance: they can
be used to detect link spam. Link spam is the name for putting links between web pages with no other purpose than to
increase the PageRank of a website. Specifically, the conclusions of [1] state that ‘‘The eigenvectors corresponding to the
second eigenvalue λ2 = p are an artifact of certain structures in the web graph. In particular, each pair of leaf nodes in the
SCC1 graph for the chain P corresponds to an eigenvector of A with eigenvalue p. These leave nodes in the SCC are those
subgraphs in the web link graph which have incoming edges, but have no edges to other components. Link spammers often
generate such structures in attempts to hoard rank. Analysis of the nonprincipal eigenvectors of Amay lead to strategies for
combating link spam’’.

In this paper we will explain this remark. We will review the theory about the second eigenvalue of the Google Matrix
that is described in [1,2] and extend itwith results for the corresponding eigenvectors.Wewill use our findings to propose an
efficient algorithm to detect these structures in theweb thatmay indicate link spamming.Wewill illustrate the performance
of the algorithm on web crawls containing several millions of pages.
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1 Strongly Connected Component.
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The structure of this paper is as follows. Section 2 explains the structure of the Google Matrix and gives different
methods for computing the PageRank. Section 3 discusses the relation between irreducible closed subsets in a graph and link
spamming. Section 4 gives the relevant theory for the second eigenvalue and the corresponding eigenvectors of the Google
Matrix. It also explains how the second eigenvectors are related to the irreducible closed subsets. Section 5 describes two
algorithms for computing the second eigenvectors. Section 6 compares the performance of the algorithms on web crawls of
several millions of pages. Section 7 summarizes our findings and makes some concluding remarks.

Remarks on notation and terminology: The terms ‘web sites’, ‘web pages’ and ‘nodes’ as well as the terms ‘hyperlinks’ and
‘web links’ are used interchangeably.
The ith eigenvector is written as x(i) and the jth element of vector x is written as xj. A submatrix of matrix Awill be denoted
by Aij and an element of A by aij.

2. The Google matrix

We introduceW , a set of the web pages, that are connected to each other by hyperlinks, i.e., incoming and outgoing links
between web pages. The mathematical representation of W is a directed graph, in which a directed link between nodes of
the graph represents an incoming or outgoing link between web pages.

Let n be the number of websites. Further, let G be the n-by-n connectivity matrix with gij = 1 if there is an outgoing
hyperlink from page j to i and gij = 0 otherwise. G is the matrix representation ofW . The number of websites n is extremely
large, hundreds of millions, while every website only contains a few outgoing links. The matrix G is therefore large and
sparse.

We denote by cj the column sums of G, that is cj =


i gij. Note that cj is the number of outgoing hyperlinks of website j.
We will also call this the out-degree of page j.

Surfing the web can be modeled as a Markov process, where one state transitions into another state by following
hyperlinks. In order to model this process we introduce the row-stochastic matrix P. The entries pji of P are given by

pji =


gij/cj if cj ≠ 0,
1/n if cj = 0. (2.1)

Note that PT is the column-stochastic transition probability matrix of the Markov process. Nodes without outgoing hyper-
links are called dangling nodes. From (2.1) follows that from a dangling node all pages can be reached with equal probability.
Following [3], we assume that self-referencing nodes, i.e., gii = 1 for node i, are not allowed.

The above Markov process does not capture the possibility that a web surfer jumps to another page without following
an outlink. To include this behavior, called teleportation, Google’s PageRankmodel assumes that an outlink is followedwith
probability p and a jump to a random page is made with probability 1 − p. Typically, p is chosen between 0.85 and 0.99.

Let A be the n-by-n column-stochastic transitionmatrix of this Markov process that includes teleportation. The elements
aij of this matrix are given by

aij =


pgij/cj + (1 − p)/n if cj ≠ 0.
1/n if cj = 0. (2.2)

In matrix notation this can be written as

A = pPT
+

(1 − p)
n

eeT, (2.3)

with e the n-vector of all ones. Also, recognize that if page j is a dangling node then each page has a probability 1/n to be
chosen. Thus, if column aj = e/n then page j is a dangling node.

By introducing the diagonal matrix D, of which the main diagonal elements djj are defined by

djj =


1/cj if cj ≠ 0
0 if cj = 0, (2.4)

and by defining the vector zwith coefficients zj given by

zj =


(1 − p)/n if cj ≠ 0
1/n if cj = 0, (2.5)

the matrix A can also be written as

A = pGD + ezT. (2.6)
The matrix ezT accounts for teleportation. Note that as a consequence of this teleportation matrix, A is positive, meaning
that every entry is positive, and is irreducible.

The PageRank is determined as the eigenvector of the dominant eigenvalue of the following system:

Ax(1)
= λ1x(1). (2.7)

Intuitively, when recalling the random web surfer from Section 1, the eigenvector x(1) is the distribution of the visiting
frequency for each node. The more often the surfer passes node j, the higher its PageRank will be.



Download English Version:

https://daneshyari.com/en/article/4638712

Download Persian Version:

https://daneshyari.com/article/4638712

Daneshyari.com

https://daneshyari.com/en/article/4638712
https://daneshyari.com/article/4638712
https://daneshyari.com

