
Journal of Computational and Applied Mathematics 270 (2014) 343–352

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Optimal control for mass conservative level set methods
Christopher Basting ∗, Dmitri Kuzmin
Department of Mathematics, LS III, Dortmund University of Technology, Vogelpothsweg 87, D-44227 Dortmund, Germany

a r t i c l e i n f o

Article history:
Received 27 September 2013
Received in revised form 17 December 2013

Keywords:
Evolving interfaces
Level set methods
Finite elements
Mass conservation
Optimal control
PDE-constrained optimization

a b s t r a c t

This paper presents two different versions of an optimal control method for enforcing
mass conservation in level set algorithms. The proposed PDE-constrained optimization
procedure corrects a numerical solution to the level set transport equation so as to satisfy
a conservation law for the corresponding Heaviside function. In the original version of
this method, conservation errors are corrected by adding the gradient of a scalar control
variable to the convective flux in the state equation. In the present paper,we investigate the
use of vector controls. The alternative formulation offers additional flexibility and requires
less regularity than the original method. The nonlinear system of first-order optimality
conditions is solved using a standard fixed-point iteration. The new methodology is
evaluated numerically and compared to the scalar control approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Evolving interfaces commonly occur in two-phase fluid dynamics, image processing, andmany other fields of science and
technology. In a typical mathematical model, a moving boundary separates twomaterials with different physical properties
or defines the geometry of a deformable object. The numerical solution of such problems requires an accurate localization of
the interface, and a variety of algorithms have been developed for this purpose. A particularly popular interface-capturing
technique is the level setmethod inwhich the interface is implicitly defined by the zero level set of an auxiliary function [1–3].
The evolution of the level set function is governed by a transport equation. The attractive features of the level set approach
include the simplicity of interface reconstruction, as well as the straightforward definition of normals and curvatures.

It is common practice to initialize the level set function Φ by the signed distance to the interface. This approach offers
further advantages such as the smoothness of Φ and its capability to serve as proximity indicator in the context of adaptive
mesh refinement. In the process of convection, the signed distance function property is generally lost. This deficiency is
usually rectified by using geometric redistancing procedures [4,5] or various PDE-based reinitialization techniques [3,6]. A
promising new approach is the use of minimization-based redistancing [7] which leads to a nonlinear elliptic problem.

The level set method is known to be non-conservative and may fail to preserve the total mass or volume confined
by the interface. Many approaches to maintaining mass conservation have been proposed in recent years. For example,
Smolianski [5] shifts the convected level set function by a constant to compensate a loss or gain of mass. This manipulation
may result in global non-physical displacements of the interface. Themass lost in one placemight reappear in another place,
and only global conservation is guaranteed for fluids consisting of multiple disconnected components.

The second author has recently proposed an optimization-based approach to enforcing mass conservation in level set
methods [8]. The key idea is to constrain the level set function in such a way that a local conservation law holds for the
corresponding Heaviside function. The control variable adjusts itself so that conservation of mass is enforced and deviations
from the target state are minimized. The target is defined as the solution to the standard level set transport equation. This
approach offers great flexibility since additional design criteria can be easily incorporated into the cost functional.
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In the original optimization-based mass correction method [8], the gradient of the control is added to the convective
flux. This formulation imposes stringent regularity requirements on the control. Moreover, the Schur complement operator
associated with the KKT system of optimality conditions is of biharmonic type. This has led us to explore the possibility
of replacing the gradient of a scalar control by a vector-valued control. Even though this increases the size of the system,
the discrete saddle point problem has nicer properties. In particular, the Schur complement operator is of Laplacian type.
Furthermore, milder smoothness assumptions need to be made on the control and, due to the increased dimension of the
control, more flexibility can be expected.

In this paper, we review and generalize the optimal control approach to the design of conservative level set methods.
Following the discretize-then-optimize approach,wepresent the finite element discretization before deriving the optimality
conditions of first order. The nonlinear saddle point problem is solved using a linearization which is slightly different from
the one employed in the original paper. In the numerical study below, we compare the PDE-constrained optimization
methods based on scalar and vector-valued control, in particular regarding the number of fixed-point iterations per time
step.

2. Level set method

The level set approach to simulating the evolution of a moving interface Γ inside a bounded domain Ω is based on an
implicit representation of Γ in terms of a scalar indicator function Φ(x, t) such that

Γ (Φ) = {x ∈ Ω | Φ(x, t) = 0}. (1)
The evolution of Φ is governed by the transport equation

∂Φ

∂t
+ v · ∇Φ = 0 in Ω, (2)

where v is a given velocity field. In applications to two-phase fluid dynamics, v is usually determined by solving the
incompressible Navier–Stokes equations.

The usual initial condition for Φ is given by the signed distance function (SDF)
Φ(x, 0) = ±dist(x, Γ0). (3)

Since the SDF property is generally lost as time evolves, the solution to (2) is commonly reinitialized to become a SDF again
after a certain number of time steps.

For simplicity, we restrict ourselves to two-phase flow applications. Let the interface Γ separate two incompressible
fluids with densities ρ1 and ρ2. The corresponding subdomains are denoted by Ω1(t) := {x ∈ Ω | Φ(x, t) > 0} and
Ω2(t) = Ω \ (Ω1(t) ∪ Γ (t)). To tell the fluids apart, we will use the Heaviside function H ◦ Φ : Ω × [0, ∞) → R s.t.

H(Φ(x, t)) =


1 if Φ(x, t) > 0,
0 if Φ(x, t) < 0. (4)

The total mass contained in Ω1 is given by the volume integral

m1(t) =


Ω1(t)

ρ1dx =


Ω

ρ(x, t)H(Φ(x, t))dx, (5)

where we have used the definition of the piecewise-constant density
ρ(Φ(x, t)) := (ρ1 − ρ2)H(Φ(x, t)) + ρ2. (6)

Using this formalism, the continuity equation
∂ρ(Φ)

∂t
+ ∇ · (ρ(Φ)v) = 0 in Ω (7)

can be written in the equivalent form
∂H(Φ)

∂t
+ ∇ · (H(Φ)v) = 0 in Ω. (8)

At the continuous level, the solution to the level set equation (2) satisfies conservation laws (7) and (8). However, numerical
solutions to (2) are generally non-conservative, whence the volume of the incompressible fluids may change in an unpre-
dictable manner. Many postprocessing techniques and hybrid algorithms have been developed for improving themass con-
servation properties of level set algorithms [9–15]. Our approach [8] to this problem is based on the use of PDE-constrained
optimization.

3. Scalar control approach

In this section, we review themass correction algorithm proposed in [8]. LetH(Φ) denote the Heaviside function defined
by (4). Consider the modified conservation law

∂H(Φ)

∂t
+ ∇ · (H(Φ̃)v − ∇u) = 0 in Ω. (9)
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