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a b s t r a c t

An hp-adaptive Discontinuous Galerkin Method for electromagnetic wave propagation
phenomena in the time domain is proposed. The method is highly efficient and allows
for the first time the adaptive full-wave simulation of large, time-dependent problems in
three-dimensional space. Refinement is performed anisotropically in the approximation
order p and the mesh step size h regardless of the resulting level of hanging nodes. For
guiding the adaptation process a variant of the concept of reference solutions with largely
reduced computational costs is proposed. The computational mesh is adapted such that a
given error tolerance is respected throughout the entire time-domain simulation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this article, we are concerned with adaptively solving the Maxwell equations for electromagnetic fields with arbitrary
time dependence in a three-dimensional domain such that a prescribed error tolerance is respected. In order to achieve
this goal the Discontinuous Galerkin Method (DGM) [1,2] is applied on anisotropic hp-meshes, which dynamically and
autonomously adapt as the electromagnetic fields evolve. The mesh refinement is driven by a robust local error estimate
based on a modification of the so-called method of reference solutions [3,4] with largely reduced numerical costs.

The DGmethod has gainedwide acceptance as a high order numericalmethod, which is verywell suited for time-domain
problems. It combines the usually opposing key features of high order accuracy and flexibility. In particular, the method can
easily deal with meshes containing hanging nodes, which makes it particularly well suited for hp-adaptivity. There is a well
established body of literature on the DGM for various types of problems available. It has been thoroughly investigated by
several research groups (see e.g. [5–7] and references therein). ConcerningMaxwell’s equations in the timedomain, theDGM
has been studied in particular in [7–10]. The latter two make use of hexahedral meshes, which allow for a computationally
more efficient implementation [11].

The simplest approach to adapted grids consists of static a priori h-refinement around edges and corners, i.e., the possible
locations of field singularities [12].While this approachmitigates negative effects of fields singularities on the global solution
accuracy, the level of refinement to be applied for achieving a certain accuracy is unknown. Moreover, edges and corners
require no mesh refinement while there is no field, for instance, before illumination by a wave or after scattering took
place. It also remains unclear how to choose polynomial orders in the remaining mesh. For these reasons our focus is on
hp-adaptivity based on error estimations of the time-dependent solution.

Mesh refinement and specifically hp-adaptation has received considerable and continuous attention. The first published
work on h-, p- and hp-adaptivity within the DG framework is presumably [13], where the authors considered linear
scalar hyperbolic conservation laws in two-dimensional space. Hyperbolic problems have also been addressed, e.g., by
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Flaherty, Shephard and co-workers who considered two-dimensional problems in [14,15] as well as three-dimensional
settings with pure h-refinement in [16,17]. A large number of contributions has been authored by Houston and various
co-workers. They present a number of approaches to adaptivity and deal with first-order hyperbolic problems in [18,19],
using adjoint solutions [19,20] or estimating errors in an energy norm [21,22]. The contributions have a clear focus on
the rigorous derivation of error estimates and error bounds. Applications are limited to one or two space dimensions.
Recently, Solin and co-workers published papers, where they apply dynamical hp-meshes for various coupled problems
including electromagnetics in two space dimensions [23–25]. They employ the concept of reference solutions for controlling
mesh adaptivity and perform refinements, which are fully anisotropic in both mesh parameters h and p. The application of
reference solutions in their original form is numerically very expensive. In [25] it is stated that the solution of large three-
dimensional problems would require distributed parallel computing.

In this paper, we propose a modification of the concept of reference solutions with drastically reduced numerical costs,
whichmakes such simulations feasible. At the same time the key advantages aremaintained, in particular its robustness and
the independence of a particular set of underlying partial differential equations. The increased efficiency comes at the price
of losing some sharpness in the error estimate. Like the original formulation, the proposed algorithm is entirely devoid of
tuning parameters, and it reduces the true approximation error, i.e., it is not based on residuals or heuristic measures such
as steep gradients. The adaptation can be performed in four major modes: isotropic in h and p, anisotropic in one of h or p,
and fully anisotropic in h and p. Unconstrained refinement in h is possible because we allow for high level hanging nodes.
The number of degrees of freedom (DoF) in a discretization will usually decrease from the former to the latter mode, while
the computational load for finding the adaptedmesh increases. However, we will show below that great savings in both the
number of DoF and computational time can be achieved by using fully anisotropic adaptivity.

The remainder of this article is organized as follows. In Section 2 the notation and Finite Element Spaces (FES) are
introduced, which are applied for obtaining a weak DG formulation of Maxwell’s equations. Section 3 is devoted to the
mesh refinement algorithm. First the individual steps, which constitute an adaptive algorithm are discussed. They are error
estimation, element marking, the h–p-decision and the actual mesh adaptation. For each step a brief description with a
reviewof the state of the art is provided, beforewe proceedwith the details of our realization of each step in Sections 3.1–3.5.
Examples are presented in Section 4, which include a waveguide and an antenna radiation problem. Section 5 summarizes
the findings and concludes the article.

2. Discretization of Maxwell’s equations

In the following we assume resting, heterogeneous, linear, isotropic, non-dispersive and time-independent materials.
Then, the magnetic permeability, µ, and dielectric permittivity, ϵ, are scalar values depending on the spatial position only.
Under these assumptions Maxwell’s equations read

∇ × E(x, t) = −µ(x)
∂

∂t
H(x, t), (1)

∇ × H(x, t) = ϵ(x)
∂

∂t
E(x, t)+ J(x, t), (2)

with the spatial variable x ∈ Ω ⊂ R3 and the temporal variable t ∈ [t0, T ] ⊂ R subject to boundary conditions specified at
the domain boundary ∂Ω and initial conditions specified at time t0. The electric and magnetic field vectors are denoted by
E and H, J denotes the electric current density.

Discretizations of Maxwell’s equations using the Discontinuous Galerkin Method have been obtained among others
in [7–10]. We will follow the framework and notation described in our previous work [26], which makes use of hexahedral
meshes and modal basis functions as introduced in [10].

2.1. Notation

We denote by Th a tessellation of the domain of interest Ω composed from non-overlapping hexahedra Ti such that
Th =

N
i=1 Ti covers Ω . The tessellation is required to be derivable from a regular root tessellation T0 by means of

element bisections. However, we do not demand the resulting tessellation to be regular, i.e., we allow for hanging nodes
and specifically for high level hanging nodes. The number of bisections performed for obtaining element Ti is denoted
by Li in the isotropic and Ld,i in the anisotropic case where d corresponds to any of the spatial coordinates {x, y, z}. We
call the intersection of two neighboring elements Ti ∩ Tk their interface Iik. In non-conformingly refined meshes, every
face Fj of a hexahedral element may be partitioned into several interfaces depending on the number of neighbors K such
that Fj =

K
k=1 Iik. This is an important difference to most other works including [7,9,27], which require one-to-one

neighborhood relations. The (inter-)face orientation is described by the outward pointing unitary normal nj. The union of
all faces is denoted by F . The volume and edge length measures of element i are denoted by |Ti| and |Td,i|.
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